scholarly journals Applying Yoneda's lemma to consciousness research: categories of level and contents of consciousness

Author(s):  
Naotsugu Tsuchiya ◽  
Hayato Saigo

Characterizing consciousness in and of itself is notoriously difficult. Any effort to define consciousness seems to evade what it tries to achieve. In particular, definitions often involve comparisons of different kinds of “consciousness” in a self-referential manner. The tautological nature of characterizing consciousness has led some scholars to propose that establishing a science of consciousness is infeasible. Here, we propose an alternative approach to characterize, and to eventually define, consciousness through exhaustive descriptions of consciousness’ relationships to all other consciousness. This approach is mathematically founded in category theory. Indeed, category theory can prove two objects A and B in a category can be equivalent if and only if all the relationships that A holds with others in the category are the same as those of B; this proof is called the Yoneda lemma. To introduce the Yoneda lemma, we gradually introduce key concepts of category theory to consciousness researchers in this paper. Along the way, we propose several possible definitions of categories of consciousness, both in terms of level and contents, through the usage of simple examples. We also propose empirical research programs that can test the validity of our proposed categories of consciousness and to improve them. We propose to use the categorical structure of consciousness as a gold standard if one tries to empirically test some structural theories of consciousness, such as Integrated Information Theory of consciousness.

2021 ◽  
Vol 2021 (2) ◽  
Author(s):  
Naotsugu Tsuchiya ◽  
Hayato Saigo

Abstract Characterizing consciousness in and of itself is notoriously difficult. Here, we propose an alternative approach to characterize, and eventually define, consciousness through exhaustive descriptions of consciousness’ relationships to all other consciousness. This approach is founded in category theory. Indeed, category theory can prove that two objects A and B in a category can be equivalent if and only if all the relationships that A holds with others in the category are the same as those of B; this proof is called the Yoneda lemma. To introduce the Yoneda lemma, we gradually introduce key concepts of category theory to consciousness researchers. Along the way, we propose several possible definitions of categories of consciousness, both in terms of level and contents, through the usage of simple examples. We propose to use the categorical structure of consciousness as a gold standard to formalize empirical research (e.g. color qualia structure at fovea and periphery) and, especially, the empirical testing of theories of consciousness.


2021 ◽  
Vol 28 (9) ◽  
pp. 65-75
Author(s):  
C. koch

Panpsychism shares many intuitions with integrated information theory (IIT), in particular that consciousness is an intrinsic fundamental property of reality, is graded, and can be found in small amounts in simple physical systems. Unlike panpsychism, however, IIT clearly articulates which systems are conscious and which ones are not (resolving panpsychism's combination problem) and why consciousness can be adaptive. The systemic weakness of panpsychism, or any other -ism, is that they fail to offer a protracted conceptual, let alone empirical, research programme that yields novel insights or proposes new experiments. Without those, progress on the mindâ–“body problem will not occur.


2019 ◽  
Author(s):  
Georg Northoff ◽  
Naotsugu Tsuchiya ◽  
Hayato Saigo

AbstractConsciousness is a central issue in cognitive neuroscience. To explain the relationship between consciousness and its neural correlates, various theories have been proposed. We still lack a formal framework that can address the nature of the relationship between consciousness and its physical substrates though. Here, we provide a novel mathematical framework of Category Theory (CT), in which we can define and study the “sameness” between “different” domains of phenomena such as consciousness and its neural substrates. CT was designed and developed to deal with the “relationships” between various domains of phenomena. We introduce three concepts of CT including (i) category; (ii) inclusion functor and expansion functor; and (iii) natural transformation between the functors. Each of these mathematical concepts is related to specific features in the neural correlates of consciousness (NCC). In this novel framework, we will examine two of the major theories of consciousness: integrated information theory (IIT) of consciousness and temporo-spatial theory of consciousness (TTC). These theories concern the structural relationships among structures of physical substrates and subjective experiences. The three CT-based concepts, introduced in this paper, unravel some basic issues in our search for the NCC; while addressing the same questions, we show that IIT and TTC provide different albeit complementary answers. Importantly, our account suggests that we need to go beyond a traditional concept of NCC including both content-specific and full NCC. We need to shift our focus from the relationship between “one” neuronal and “one” phenomenal state to the relationship between a structure of neural states and a structure of phenomenal states. We conclude that CT unravels and highlights basic questions about the NCC in general which needs to be met and addressed by any future neuroscientific theory of consciousness.Author summaryNeuroscience has made considerable progress in uncovering the neural correlates of consciousness (NCC). At the same time, recent studies demonstrated the complexity of the neuronal mechanisms underlying consciousness. To make further progress in the neuroscience of consciousness, we need proper mathematical formalization of the neuronal mechanisms potentially underlying consciousness. Providing a first tentative attempt, our paper addresses both by (i) pointing out the specific problems of and proposing a new approach to go beyond the traditional approach of the neural correlates of consciousness, and (ii) by recruiting a recently popular mathematical formalization, category theory (CT). With CT, we provide mathematical formalization of the broader neural correlates of consciousness by its application to two of the major theories, integrated information theory (IIT) and temporo-spatial theory of consciousness (TTC). Together, our CT-based mathematical formalization of the neural correlates of consciousness including its specification in the terms of IIT and TTC allows to go beyond the current concept of NCC in both mathematical and neural terms.


PROTOPLASMA ◽  
2021 ◽  
Author(s):  
Anthony Trewavas

AbstractLacking an anatomical brain/nervous system, it is assumed plants are not conscious. The biological function of consciousness is an input to behaviour; it is adaptive (subject to selection) and based on information. Complex language makes human consciousness unique. Consciousness is equated to awareness. All organisms are aware of their surroundings, modifying their behaviour to improve survival. Awareness requires assessment too. The mechanisms of animal assessment are neural while molecular and electrical in plants. Awareness of plants being also consciousness may resolve controversy. The integrated information theory (IIT), a leading theory of consciousness, is also blind to brains, nerves and synapses. The integrated information theory indicates plant awareness involves information of two kinds: (1) communicative, extrinsic information as a result of the perception of environmental changes and (2) integrated intrinsic information located in the shoot and root meristems and possibly cambium. The combination of information constructs an information nexus in the meristems leading to assessment and behaviour. The interpretation of integrated information in meristems probably involves the complex networks built around [Ca2+]i that also enable plant learning, memory and intelligent activities. A mature plant contains a large number of conjoined, conscious or aware, meristems possibly unique in the living kingdom.


2019 ◽  
Vol 7 (1) ◽  
pp. 1-14 ◽  
Author(s):  
Lachlan Kent

Duration perception is not the same as perception duration. Time is an object of perception in its own right and is qualitatively different to exteroceptive or interoceptive perception of concrete objects or sensations originating within the self. In reviewing evidence for and against the experienced moment, White (2017, Psychol. Bull., 143, 735–756) proposed a model of global integration of information dense envelopes of integration. This is a valuable addition to the literature because it supposes that, like Tononi’s (2004, BMC Neurosci., 5, 42) Integrated Information Theory, consciousness is an integral step above perception of objects or the self. Consciousness includes the perception of abstract contents such as time, space, and magnitude, as well as post-perceptual contents drawn from memory. The present review takes this logic a step further and sketches a potential neurobiological pathway through the salience, default mode, and central executive networks that culminates in a candidate model of how duration perception and consciousness arises. Global integration is viewed as a process of Bayesian Prediction Error Minimisation according to a model put forward by Hohwy, Paton and Palmer (2016, Phenomenol. Cogn. Sci., 15, 315–335) called ‘distrusting the present’. The proposed model also expresses global integration as an intermediate stage between perception and memory that spans an approximate one second duration, an analogue of Wittmann’s (2011, Front. Integr. Neurosci., 5, 66) experienced moment.


Sign in / Sign up

Export Citation Format

Share Document