scholarly journals Grand unified theories revisited

2021 ◽  
Author(s):  
Wan-Chung Hu

更正敝人統一場論公式變成:BxExAxS=gamma*pi*H*c^2這是此公式在運動下校正gamma是洛侖茲因子作泰勒展開 變成:BxExAxS=pi*H*c^2+1/2*pi*H*v^2這是把原我書中重新推導用盎魯霍金效應T=ah'/2piKc=ch'/2piKR代入拉莫公式與史帝分公式恆等式把加速度a與距離R消去最後右邊分母剩下的角度用洛侖茲因子校正另外本來提出電荷造成時間收縮此觀點也要修改 電荷不敵質量因為KQq/2r

Author(s):  
Steven E. Vigdor

Chapter 4 deals with the stability of the proton, hence of hydrogen, and how to reconcile that stability with the baryon number nonconservation (or baryon conservation) needed to establish a matter–antimatter imbalance in the infant universe. Sakharov’s three conditions for establishing a matter–antimatter imbalance are presented. Grand unified theories and experimental searches for proton decay are described. The concept of spontaneous symmetry breaking is introduced in describing the electroweak phase transition in the infant universe. That transition is treated as the potential site for introducing the imbalance between quarks and antiquarks, via either baryogenesis or leptogenesis models. The up–down quark mass difference is presented as essential for providing the stability of hydrogen and of the deuteron, which serves as a crucial stepping stone in stellar hydrogen-burning reactions that generate the energy and elements needed for life. Constraints on quark masses from lattice QCD calculations and violations of chiral symmetry are discussed.


2020 ◽  
Vol 2020 (11) ◽  
Author(s):  
Luca Di Luzio

Abstract An accidental U(1) Peccei-Quinn (PQ) symmetry automatically arises in a class of SO(10) unified theories upon gauging the SU(3)f flavour group. The PQ symmetry is protected by the ℤ4 × ℤ3 center of SO(10) × SU(3)f up to effective operators of canonical dimension six. However, high-scale contributions to the axion potential posing a PQ quality problem arise only at d = 9. In the pre-inflationary PQ breaking scenario the axion mass window is predicted to be ma ∈ [7 × 10−8, 10−3] eV, where the lower end is bounded by the seesaw scale and the upper end by iso-curvature fluctuations. A high-quality axion, that is immune to the PQ quality problem, is obtained for ma ≳ 2 0.02 eV. We finally offer a general perspective on the PQ quality problem in grand unified theories.


1982 ◽  
Vol 26 (9) ◽  
pp. 2396-2419 ◽  
Author(s):  
R. W. Robinett ◽  
Jonathan L. Rosner

2014 ◽  
Vol 29 (18) ◽  
pp. 1430032 ◽  
Author(s):  
S. Heinemeyer ◽  
M. Mondragón ◽  
G. Zoupanos

Finite Unified Theories (FUTs) are N = 1 supersymmetric Grand Unified Theories (GUTs) which can be made finite to all-loop orders, based on the principle of reduction of couplings, and therefore are provided with a large predictive power. We confront the predictions of an SU(5) FUT with the top and bottom quark masses and other low-energy experimental constraints, resulting in a relatively heavy SUSY spectrum, naturally consistent with the nonobservation of those particles at the LHC. The light Higgs boson mass is automatically predicted in the range compatible with the Higgs discovery at the LHC. Requiring a light Higgs boson mass in the precise range of Mh= 125.6 ±2.1 GeV favors the lower part of the allowed spectrum, resulting in clear predictions for the discovery potential at current and future pp, as well as future e+e-colliders.


1980 ◽  
Vol 97 (3-4) ◽  
pp. 367-370 ◽  
Author(s):  
I. Antoniadis ◽  
C. Bouchiat ◽  
J. Iliopoulos

Sign in / Sign up

Export Citation Format

Share Document