scholarly journals New interpretation and thought experiment in quantum mechanics

2018 ◽  
Author(s):  
John joseph Taylor

An interpretation of quantum mechanics involving multiple dimensions is proposed, as well as a thought experiment that in principle if performed correctly could either prove or disprove quantum randomness. All outcomes, of a particle’s wave function manifest but manifest in more than three dimensions, and when the wave function collapses, we see the outcome of the wave function, which only exist in three dimensions. Furthermore, a particle is a much larger object, and exists physically as a wave across more than three dimensions and our best description of this is the Schrodinger wave, because it only describes it in three dimensions. We cannot observe the particle as a wave because it is spread out as an object in which most of it exists in more than three dimensions, but when we observe the part or outcome of a wave function that does exist in three dimensions, which is when collapse occurs it leads to particle like properties, due to not being able to interact with the rest of the wave because it is confined to just interacting on a three dimensional scale because we are observing it in three dimensions. Furthermore we cannot observe the part of the wave function that exists in more than three dimensions, in three dimensions because of the principle that in order to observe an object in it's entirety it needs to be observed in all of it's dimensions. Strange phenomenon in quantum mechanics such as tunneling, can be explained by saying that there is a probability of finding the part of wave function that exists in three dimensions on the other side of the barrier, which has travelled over that barrier classically and the probability of it travelling over the barrier decreases expontentially to the width of the barrier increasing. Whether the quantum world is random, or is determined by non-local hidden variables, can be determined by a simple deductive thought experiment as outlined in this article.

2020 ◽  
Vol 2020 (9) ◽  
Author(s):  
Rodolfo Panerai ◽  
Antonio Pittelli ◽  
Konstantina Polydorou

Abstract We find a one-dimensional protected subsector of $$ \mathcal{N} $$ N = 4 matter theories on a general class of three-dimensional manifolds. By means of equivariant localization we identify a dual quantum mechanics computing BPS correlators of the original model in three dimensions. Specifically, applying the Atiyah-Bott-Berline-Vergne formula to the original action demonstrates that this localizes on a one-dimensional action with support on the fixed-point submanifold of suitable isometries. We first show that our approach reproduces previous results obtained on S3. Then, we apply it to the novel case of S2× S1 and show that the theory localizes on two noninteracting quantum mechanics with disjoint support. We prove that the BPS operators of such models are naturally associated with a noncom- mutative star product, while their correlation functions are essentially topological. Finally, we couple the three-dimensional theory to general $$ \mathcal{N} $$ N = (2, 2) surface defects and extend the localization computation to capture the full partition function and BPS correlators of the mixed-dimensional system.


Author(s):  
Matt Jones

A primary goal in recent research on contextuality has been to extend this concept to cases of inconsistent connectedness, where observables have different distributions in different contexts. This article proposes a solution within the framework of probabi- listic causal models, which extend hidden-variables theories, and then demonstrates an equivalence to the contextuality-by-default (CbD) framework. CbD distinguishes contextuality from direct influences of context on observables, defining the latter purely in terms of probability distributions. Here, we take a causal view of direct influences, defining direct influence within any causal model as the probability of all latent states of the system in which a change of context changes the outcome of a measurement. Model-based contextuality (M-contextuality) is then defined as the necessity of stronger direct influences to model a full system than when considered individually. For consistently connected systems, M-contextuality agrees with standard contextuality. For general systems, it is proved that M-contextuality is equivalent to the property that any model of a system must contain ‘hidden influences’, meaning direct influences that go in opposite directions for different latent states, or equivalently signalling between observers that carries no information. This criterion can be taken as formalizing the ‘no-conspiracy’ principle that has been proposed in connection with CbD. M-contextuality is then proved to be equivalent to CbD-contextuality, thus providing a new interpretation of CbD-contextuality as the non-existence of a model for a system without hidden direct influences. This article is part of the theme issue ‘Contextuality and probability in quantum mechanics and beyond’.


2004 ◽  
Vol 02 (03) ◽  
pp. 407-418 ◽  
Author(s):  
TABISH QURESHI

A thought experiment, proposed by Karl Popper, which has been experimentally realized recently, is critically examined. A basic flaw in Popper's argument which has also been prevailing in subsequent debates, is pointed out. It is shown that Popper's experiment can be understood easily within the Copenhagen interpretation of quantum mechanics. An alternate experiment, based on discrete variables, is proposed, which constitutes Popper's test in a clearer way. It refutes the argument of absence of nonlocality in quantum mechanics.


1988 ◽  
Vol 03 (07) ◽  
pp. 645-651 ◽  
Author(s):  
SUMIO WADA

A non-probabilistic interpretation of quantum mechanics asserts that we get a prediction only when a wave function has a peak. Taking this interpretation seriously, we discuss how to find a peak in the wave function of the universe, by using some minisuperspace models with homogeneous degrees of freedom and also a model with cosmological perturbations. Then we show how to recover our classical picture of the universe from the quantum theory, and comment on the physical meaning of the backreaction equation.


Author(s):  
Jae-Kwang Hwang

Three-dimensional quantized space model is newly introduced. Quantum mechanics and relativity theory are explained in terms of the warped three-dimensional quantized spaces with the quantum time width (Dt=tq). The energy is newly defined as the 4-dimensional space-time volume of E = cDtDV in the present work. It is shown that the wave function of the quantum mechanics is closely related to the warped quantized space shape with the space time-volume. The quantum entanglement and quantum wave function collapse are explained additionally. The special relativity theory is separated into the energy transition associated with the space-time shape transition of the matter and the momentum transition associated with the space-time location transition. Then, the quantum mechanics and the general relativity theory are about the 4-dimensional space-time volume and the 4-dimensional space-time distance, respectively.


Author(s):  
Joaquin Trujillo

The articles provides a phenomenological reading of the Many-Worlds Interpretation (MWI) of quantum mechanics and its answer to the measurement problem, or the question of “why only one of a wave function’s probable values is observed when the system is measured.” Transcendental-phenomenological and hermeneutic-phenomenological approaches are employed. The project comprises four parts. Parts one and two review MWI and the standard (Copenhagen) interpretation of quantum mechanics. Part three reviews the phenomenologies. Part four deconstructs the hermeneutics of MWI. It agrees with the confidence the theory derives from its (1) unforgiving appropriation of the Schrödinger equation and (2) association of branching universes with the evolution of the wave function insofar as that understanding comes from the formalism itself. Part four also reveals the hermeneutical shortcomings of the standard interpretation.


Author(s):  
Indrajit Sen ◽  
Antony Valentini

We prove that superdeterministic models of quantum mechanics are conspiratorial in a mathematically well-defined sense, by further development of the ideas presented in a previous article A . We consider a Bell scenario where, in each run and at each wing, the experimenter chooses one of N devices to determine the local measurement setting. We prove, without assuming any features of quantum statistics, that superdeterministic models of this scenario must have a finely tuned distribution of hidden variables. Specifically, fine-tuning is required so that the measurement statistics depend on the measurement settings but not on the details of how the settings are chosen. We quantify this as the overhead fine-tuning F of the model, and show that F  > 0 (corresponding to ‘fine-tuned’) for any N  > 1. The notion of fine-tuning assumes that arbitrary (‘non-equilibrium’) hidden-variables distributions are possible in principle. We also show how to quantify superdeterministic conspiracy without using non-equilibrium. This second approach is based on the fact that superdeterministic correlations can mimic actual signalling. We argue that an analogous situation occurs in equilibrium where, for every run, the devices that the hidden variables are correlated with are coincidentally the same as the devices in fact used. This results in extremely large superdeterministic correlations, which we quantify as a drop of an appropriately defined formal entropy. Non-local and retrocausal models turn out to be non-conspiratorial according to both approaches.


Sign in / Sign up

Export Citation Format

Share Document