scholarly journals Stratigraphic modeling of the Western Taiwan foreland basin: sediment flux from a growing mountain range and tectonic implications

2017 ◽  
Author(s):  
Stefan Nagel ◽  
Didier Granjeon ◽  
Sean Willett ◽  
Andrew Lin ◽  
Sebastien Castelltort
2018 ◽  
Vol 96 ◽  
pp. 331-347 ◽  
Author(s):  
Stefan Nagel ◽  
Didier Granjeon ◽  
Sean Willett ◽  
Andrew Tien-Shun Lin ◽  
Sébastien Castelltort

2020 ◽  
Author(s):  
Thomas Bernard ◽  
Hugh Sinclair ◽  
Mark Naylor ◽  
Elliot Weir ◽  
Frédéric Christophoul ◽  
...  

<p>The transition from syn- to post-orogenesis is generally identified in foreland basins by a switch from active subsidence and deposition to isostatic rebound and erosion. However, the nature of the interplay between isostatic rebound and sediment supply, and their impact on the topographic evolution of a range and foreland basin during this transition has not been fully explored.</p><p>Here, we use a box model to explore the syn- to post-orogenic evolution of foreland basin/thrust wedge systems. Using a set of parameter values that approximate the northern Pyrenees and the neighbouring Aquitaine foreland basin, we evaluate the controls on: 1) the sediment drape over the frontal parts of the retro-wedge and 2) the sediment accumulation into surrounding continental margins following cessation of crustal thickening. Conglomerate and sandstone sediments preserved at approximately 600 m elevation, which is ~300 m above the present mountain front in the northern Pyrenees record an age of ca. 12 Ma, approximately 8 Myrs younger than the last evidence of crustal thickening in the wedge. These sediments formed a regional drape that reached up to approximately 800 m elevation, but are now preserved in low gradient patches, and are associated with more regional surfaces across the northern Pyrenees. Using the model, this post-orogenic sediment drape can be explained by the combination of a sustained, high sediment influx from the range into the basin relative to the efflux out of the basin, combined with cessation of basin subsidence. The model also predicts higher sediment flux out of the system during the post-orogenic phase involving an increase of sediment accumulation as observed in the Bay of Biscay during this interval.</p><p>Post-orogenic sediment drape and increased sediment flux out the mountain range-foreland basin system are proposed as generic processes of these systems.</p>


Geology ◽  
2020 ◽  
Author(s):  
Emily S. Finzel ◽  
Justin A. Rosenblume

Carbonate lacustrine strata in nonmarine systems hold great potential for refining depositional ages through U-Pb dating of detrital zircons. The low clastic sediment flux in carbonate depositional environments may increase the relative proportion of zircons deposited by volcanic air fall, potentially increasing the chances of observing detrital ages near the true depositional age. We present U-Pb geochronology of detrital zircons from lacustrine carbonate strata that provides proof of concept for the effectiveness of both acid-digestion recovery and resolving depositional ages of nonmarine strata. Samples were collected from Early Cretaceous foreland basin fluvial sandstone and lacustrine carbonate in southwestern Montana (USA). Late Aptian–early Albian (ca. 115–110 Ma) maximum depositional ages young upsection and agree with biostratigraphic ages. Lacustrine carbonate is an important component in many types of tectonic basins, and application of detrital zircon U-Pb geochronology holds considerable potential for dating critical chemical and climatic events recorded in their stratigraphy. It could also reveal new information for the persistent question about whether the stratigraphic record is dominated by longer periods of background fine-grained sedimentation versus short-duration coarse-grained events. In tectonically active basins, lacustrine carbonates may be valuable for dating the beginning of tectonic subsidence, especially during periods of finer-grained deposition dominated by mudrocks and carbonates.


2020 ◽  
Author(s):  
Gregory Hoke ◽  
Pedro Val ◽  
Gregory Ruetenik ◽  
Robert Moucha

<p>The geomorphic processes that control temporal and spatial patterns of erosion, sediment storage and evacuation in an active mountain range (source) have a direct impact on how the signal of tectonics and climate, are recorded in the adjacent sedimentary basins (sinks). Stream power based numerical models of landscape evolution predict strong time lags between rock uplift and waves of erosion in the foreland, but this is difficult to test without proper resolution between source and sink signals..  Confirmation of model results is typically gleaned through observations that are either snapshots of processes in modern systems, or inversion of the stratigraphic record to decipher what occurred in the uplands. While cosmogenic nuclide derived, catchment wide erosion rates in the modern rivers provide a snapshot of processes happening in the last thousands of years, thermochronmeters average over the ≥ millions of years it takes a rock to ascend from the closure isotherm to the Earth’s surface,making it difficult, if not impossible to capture a minimally time averaged signal of the geomorphic system in the stratigraphic record. Paleoerosion rates from the residual cosmogenic nuclide concentration of buried sediments offer a means to bridge the gap in resolution. </p><p> </p><p>This study combines numerical modeling and cosmogenic nuclide paleoerosion rates in the Argentine Precordillera to build a rich picture of how this foreland basin system, from the hinterland through the foreland basin evolves in time and space. Our modeling shows that the dynamics of wedge-top basin formation behind a rising, and then subsequently inactive range have profound and systematic effects on the geomorphic signals both upstream and downstream of the wedge-top basin. Downstream, it is clear that there are strong, million year time lags in the uplift-triggered erosive pulse and spatial controls on where the sediment delivered to the foreland is sourced. Upstream, aggradation in the wedge top leads to the development of a wave of low erosion into the hinterland that results in the creation of perched surfaces coeval to erosive pulses downstream. In the Argentine Precordillera at 30°S an 8 Ma record of paleoerosion rates from the wedge top and foreland basin deposits along with detrital zircons provenance in the foreland largely verifies the predictions of the numerical modeling. Similarly, upstream of the wedge-top basin, there are concordant knickpoints and large, broad planation surfaces perched some 1500 m above the floor of wedge top as predicted by the low erosion wave pulse. Our combination of numerical modeling and paleoerosion rates capture the dynamic evolution of mountain range at million to thousand year timescales. </p>


2019 ◽  
Vol 483 (1) ◽  
pp. 483-516 ◽  
Author(s):  
Keith Priestley ◽  
Tak Ho ◽  
Supriyo Mitra

AbstractThis chapter examines the along-arc variation in the crustal structure of the Himalayan Mountain Range. Using results from published seismological studies, plus large teleseismic body-wave and surface-wave datasets which we analyse, we illustrate the along-arc variation by comparing the crustal properties beneath four representative areas of the Himalayan Mountain Range: the Western Syntaxis, the Garhwal–Kumaon, the Eastern Nepal–Sikkim, and the Bhutan–Northeastern India regions. The Western Syntaxis and the Bhutan–Northeastern India regions have a complicated structure extending far out in front of the main Range, whereas the Central Himalaya appear to have a much simpler structure. The deformation is more distributed beneath the western and eastern ends of the Range, but in general, the crust gradually thickens from c. 40 km on the southern side of the Foreland Basin to c. 80 km beneath the Tethys Himalaya. While the gross crustal structure of much of the Himalaya is becoming better known, our understanding of the internal structure of the Himalaya is still sketchy. The detailed geometry of the Main Himalayan Thrust and the role of the secondary structures on the underthrusting Indian Plate are yet to be characterized satisfactorily.


2021 ◽  
Author(s):  
Philémon Juvany ◽  
Miguel Garcés

<div> </div><div> <p>The early Eocene was a period of the intense collision during the formation of the Pyrenees. The flexural response to loading of the overriding European plate led to the formation of an elongated foredeep on the subducting Iberian plate which connected westward to the Atlantic Ocean. A thrust salient formed in the central Pyrenees, where Mesozoic Cover units travelled southwards on top of Triassic salt detachment. This process resulted in the sequencing of the foreland basin in different isolated sub-basins such as the Ripoll basin in the East, the Tremp-Graus and Ainsa-Jaca basins in central and western south Pyrenees and the Ager basin located south of the Tremp-Graus basin.  The precise timing and surface processes associated to this reorganization of the sedimentary routing system remains not totally understood. Indeed, various sedimentary provenance studies show that the sediments of the Tremp-Graus basin were sourced from a different catchment zone than those of the Ager basin. Besides, the Ripoll basin sediments provenance analysis shows major similarities with the Ager basin, suggesting a common catchment area in the Eastern Pyrenees. However, it has been pointed out that the clastic systems feeding the rapidly subsiding sink of the Ripoll through could not find their way towards the shallower Ager basin. In this PhD project we aim at providing further constraints to the paleogeographic reconstruction and sediment routing systems of the South Eastern Pyrenees in the light of a revised chronostratigraphic scheme. A Source-to-Sink approach will be followed to study the sediment Routing Systems and to decode the climatic and tectonic signal from the sedimentary record. It will follow a volumetric quantification of the sediment budget over the entire foreland, and a comparison with eroded rock volumes of the whole Pyrenees. The resulting revised scenario will seek conciliation of all available data from the stratigraphic, structural, petrologic, geochronologic and sedimentologic datasets with new radiogenic isotopes sedimentary provenance analysis.  </p> </div>


2020 ◽  
Author(s):  
Renas Koshnaw ◽  
Jonas Kley ◽  
Fritz Schlunegger ◽  
Klaus Wemmer ◽  
Hilmar Eynatten ◽  
...  

<p>Plate tectonics can lead to construction of mountain belts, whereas surface processes destruct the orogenic masses and redistribute the surface load. These processes can be modulated by climate through variation in air temperature and the magnitude-frequency distribution of precipitation. In the northwestern Zagros orogenic belt the driving force for hinterland uplift has been baffling. The key concern is whether uplift is due to upper crustal shortening and related crustal thickening (local uplift) or to deep lithospheric processes (regional dynamic uplift) such as slab breakoff and/or to lithospheric mantle delamination. The stratigraphic record is sensitive to geodynamic processes, yet distinguishing the tectonic signatures from the climate-induced signatures is necessary. The goal of this research is to test these competing mechanisms of orogenesis through field-based evaluations of shifts in foreland basin stratigraphy, provenance, detrital geochemistry, and climate change through time as well as flexural modeling for the northwestern Zagros orogenic belt. In the Kurdistan region of Iraq, the northwestern Zagros orogenic belt is characterized by a well preserved ~4 km thick stratigraphic column of the Neogene synorogenic predominantly clastic continental deposits that coarsen and thicken upwards: The Fatha (middle Miocene), Injana (late Miocene), Mukdadiya (latest Miocene), and the Bai-Hasan (Pleistocene) Formations. These units, in addition to sandstone beds, include thick poorly consolidated mudstone packages that in some places reach ~100 m. Preliminary results show that the frequency and thickness of sandstone-filled channels increases upsection, leading to an amalgamation of sandstone packages towards the top. This thickening-upward trend was additionally associated with an increase in the grain size. These patterns of stratigraphy dynamics hint to a progradation of the depositional systems, driven either by an increase in the sediment flux relative to the subsidence rate, or by a propagation of the orogen front towards the foreland basin. Sm-Nd analysis on the fine material packages revealed a crustal origin (εNd-) comparable to the Arabian shield, with an older crustal age upsection. Weathering proxy data such as chemical index alteration (CIA) and K<sub>2</sub>O/Al<sub>2</sub>O<sub>3</sub> ratio yield evidence for a weathering intensity that increases upsection. X-Ray diffraction data from the clay-size materials (<2-μm) show contents of smectite, illite, kaolinite and Fe-rich chlorite, with an increasing abundance of smectite minerals upsection. These mineral assemblages demonstrate a semi- arid/humid climate likely with an increasing seasonality through time, which could possibly have resulted in an increasing sediment flux. Furthermore, basic flexural modeling for the northwestern Zagors orogenic belt indicates that the present-day Zagros topography, and thus topographic load alone, cannot explain the observed basin depth. Overall, these evidences suggest that exhumation of the source terranes was enhanced by increased weathering, yet a geodynamic process could have been the main driver for controlling the formation of accommodation space and uplift of the mountain belt.</p>


Sign in / Sign up

Export Citation Format

Share Document