scholarly journals Smooth crustal velocity models cause a depletion of high-frequency ground motions on soil in 2-D dynamic rupture simulations

2021 ◽  
Author(s):  
Yihe Huang
Author(s):  
Yihe Huang

ABSTRACT A depletion of high-frequency ground motions on soil sites has been observed in recent large earthquakes and is often attributed to a nonlinear soil response. Here, I show that the reduced amplitudes of high-frequency horizontal-to-vertical spectral ratios (HVSRs) on soil can also be caused by a smooth crustal velocity model with low shear-wave velocities underneath soil sites. I calculate near-fault ground motions using both 2D dynamic rupture simulations and point-source models for both rock and soil sites. The 1D velocity models used in the simulations are derived from empirical relationships between seismic wave velocities and depths in northern California. The simulations for soil sites feature lower shear-wave velocities and thus larger Poisson’s ratios at shallow depths than those for rock sites. The lower shear-wave velocities cause slower shallow rupture and smaller shallow slip, but both soil and rock simulations have similar rupture speeds and slip for the rest of the fault. However, the simulated near-fault ground motions on soil and rock sites have distinct features. Compared to ground motions on rock, horizontal ground acceleration on soil is only amplified at low frequencies, whereas vertical ground acceleration is deamplified for the whole frequency range. Thus, the HVSRs on soil exhibit a depletion of high-frequency energy. The comparison between smooth and layered velocity models demonstrates that the smoothness of the velocity model plays a critical role in the contrasting behaviors of HVSRs on soil and rock for different rupture styles and velocity profiles. The results reveal the significant role of shallow crustal velocity structure in the generation of high-frequency ground motions on soil sites.


2021 ◽  
pp. 875529302110039
Author(s):  
Filippos Filippitzis ◽  
Monica D Kohler ◽  
Thomas H Heaton ◽  
Robert W Graves ◽  
Robert W Clayton ◽  
...  

We study ground-motion response in urban Los Angeles during the two largest events (M7.1 and M6.4) of the 2019 Ridgecrest earthquake sequence using recordings from multiple regional seismic networks as well as a subset of 350 stations from the much denser Community Seismic Network. In the first part of our study, we examine the observed response spectral (pseudo) accelerations for a selection of periods of engineering significance (1, 3, 6, and 8 s). Significant ground-motion amplification is present and reproducible between the two events. For the longer periods, coherent spectral acceleration patterns are visible throughout the Los Angeles Basin, while for the shorter periods, the motions are less spatially coherent. However, coherence is still observable at smaller length scales due to the high spatial density of the measurements. Examining possible correlations of the computed response spectral accelerations with basement depth and Vs30, we find the correlations to be stronger for the longer periods. In the second part of the study, we test the performance of two state-of-the-art methods for estimating ground motions for the largest event of the Ridgecrest earthquake sequence, namely three-dimensional (3D) finite-difference simulations and ground motion prediction equations. For the simulations, we are interested in the performance of the two Southern California Earthquake Center 3D community velocity models (CVM-S and CVM-H). For the ground motion prediction equations, we consider four of the 2014 Next Generation Attenuation-West2 Project equations. For some cases, the methods match the observations reasonably well; however, neither approach is able to reproduce the specific locations of the maximum response spectral accelerations or match the details of the observed amplification patterns.


2019 ◽  
Vol 23 (2) ◽  
pp. 147-155
Author(s):  
Vishwa Joshi

The physiographic features of Gujarat state of western India are unique, as they behaved dynamically with several alterations and modifications throughout the geological timescale. It displays a remarkable example of a terrain bestowed with geological, physiographical and climatic diversities. The massive 2001 Bhuj earthquake (M 7.7) over the Kachchh region caused severe damage and devastation to the state of Gujarat and attracted the scientific community of the world to comprehend on its structure and tectonics for future hazard reduction. In the present study, three clusters of wave paths A, B1, and B2 have considered. In each cluster, dispersion data were measured station by station which collectively formed a dispersion data file for a nonlinear inversion through Genetic algorithm. In this way, three crustal velocity models were generated for entire Gujarat. These models are 1) Across Cambay Basin (Path A), 2) Along Saurashtra - Kathiawar Horst (Path B1) and 3) Along Narmada Basin (Path B2), which were formed at different times during the Mesozoic. The average thickness of the crust estimated in the present study for paths A, B1 and B2 are 38.2 km, 36.2 km, and 41.6 km respectively and the estimated S-wave velocity in the lower crust is ~ 3.9 km/s for all the paths. The present study will improve our knowledge about the structure of the seismogenic layer of this active intraplate region 


2013 ◽  
Vol 29 (4) ◽  
pp. 1495-1519 ◽  
Author(s):  
Emel Seyhan ◽  
Jonathan P. Stewart ◽  
Robert W. Graves

Broadband ground motion simulation procedures typically utilize physics-based modeling at low frequencies, coupled with semi-stochastic procedures at high frequencies. The high-frequency procedure considered here combines deterministic Fourier amplitude spectra (dependent on source, path, and site models) with random phase. Previous work showed that high-frequency intensity measures from this simulation methodology attenuate faster with distance and have lower intra-event dispersion than in empirical equations. We address these issues by increasing crustal damping (Q) to reduce distance attenuation bias and by introducing random site-to-site variations to Fourier amplitudes using a lognormal standard deviation ranging from 0.45 for Mw < 7 to zero for Mw 8. Ground motions simulated with the updated parameterization exhibit significantly reduced distance attenuation bias and revised dispersion terms are more compatible with those from empirical models but remain lower at large distances (e.g., > 100 km).


2019 ◽  
Vol 109 (4) ◽  
pp. 1401-1418 ◽  
Author(s):  
Marco Pilz ◽  
Fabrice Cotton ◽  
Riccardo Zaccarelli ◽  
Dino Bindi

Abstract A proper assessment of seismic reference site conditions has important applications as they represent the basis on which ground motions and amplifications are generally computed. Besides accounting for the average S‐wave velocity over the uppermost 30 m (VS30), the parameterization of high‐frequency ground motions beyond source‐corner frequency received significant attention. κ, an empirical parameter introduced by Anderson and Hough (1984), is often used to represent the spectral decay of the acceleration spectrum at high frequencies. The lack of hard‐rock records and the poor understanding of the physics of κ introduced significant epistemic uncertainty in the final seismic hazard of recent projects. Thus, determining precise and accurate regional hard‐rock κ0 values is critical. We propose an alternative procedure for capturing the reference κ0 on regional scales by linking the well‐known high‐frequency attenuation parameter κ and the properties of multiple‐scattered coda waves. Using geological and geophysical data around more than 1300 stations for separating reference and soft soil sites and based on more than 10,000 crustal earthquake recordings, we observe that κ0 from multiple‐scattered coda waves seems to be independent of the soil type but correlated with the hard‐rock κ0, showing significant regional variations across Europe. The values range between 0.004 s for northern Europe and 0.020 s for the southern and southeastern parts. On the other hand, measuring κ (and correspondingly κ0) on the S‐wave window (as classically proposed), the results are strongly affected by transmitted (reflected, refracted, and scattered) waves included in the analyzed window biasing the proper assessment of κ0. This effect is more pronounced for soft soil sites. In this way, κ0coda can serve as a proxy for the regional hard‐rock κ0 at the reference sites.


2020 ◽  
Author(s):  
Xiaoyu Guan ◽  
Yuanze Zhou ◽  
Takashi Furumura

&lt;p&gt;Fitting subduction zone guided waves with synthetics is an ideal choice for studying the velocity structure of the oceanic crust. After an earthquake occurs in subduction zones, seismic waves can be trapped in the low-velocity oceanic crust and propagated as guided waves. The arrival time and frequency characteristics of the guided waves can be used to image the velocity structure of the oceanic crust. The analysis and modeling based on guided wave observations provide a rare opportunity to understand the velocity structure of the oceanic crust and the variations in oceanic crustal materials during the subduction process.&lt;/p&gt;&lt;p&gt;High-frequency guided waves have been observed in the subduction zone of eastern Alaska. On several sections, observed seismograms recorded by seismic stations show low-frequency (&lt;2Hz) onsets ahead of the main high-frequency (&gt;2Hz) guided waves. Differences in the arrival times and dispersion characteristics of seismic phases are related to the velocity structure of the oceanic crust, and the characteristics of coda waves are related to the distribution of elongated scatters in the oceanic crust. Through fitting the observed broadband waveforms and synthetics modeled with the 2-D FDM (Finite Difference Method), we obtain the preferred oceanic crustal velocity models for several sections in the subduction zone of eastern Alaska. The preferred models can explain the seismic phase arrival times, dispersions, and coda characteristics in the observed waveforms. With the obtained P- and S- wave models of velocity structures on several sections, the material compositions they represent are deduced, and the variations of oceanic crustal materials during subducting can be understood. This provides new evidence for studying the details of the subduction process in the subduction zone of eastern Alaska.&lt;/p&gt;


Sign in / Sign up

Export Citation Format

Share Document