scholarly journals The sulfur solubility minimum and maximum in silicate melt

2021 ◽  
Author(s):  
Ery Hughes ◽  
Lee Saper ◽  
Philippa Liggins ◽  
Edward Stolper

The behaviour of sulfur in magmas is complex because it dissolves as both sulfide (S2-) and sulfate (S6+) in silicate melt. An interesting aspect in the behaviour of sulfur is the solubility minima (SSmin) and maxima (SSmax) with varying oxygen fugacity (fO2). We use a simple ternary model (silicate–S2–O2) to explore the varying fO2 paths where these phenomena occur. Both SSmin and SSmax occur when S2- and S6+ are present in the silicate melt in similar quantities due to the differing solubility mechanism of these species. At constant T, a minimum in dissolved total S content (wmST) in vapour-saturated silicate melt occurs along paths of increasing fO2 and either constant fS2 or P; for paths on which wmST is held constant with increasing fO2, the SSmin is expressed as a maximum in P. However, the SSmin is not encountered during closed-system depressurisation in the simple system we modelled. The SSmax occurs when the silicate melt is multiply-saturated with vapour, sulfide melt, and anhydrite. The SSmin and SSmax influence processes throughout the magmatic system, such as mantle melting, magma mixing and degassing, and SO2 emissions; and calculations of the pressures of vapour-saturation, fO2, and SO2 emissions using melt inclusions.

2019 ◽  
Vol 64 (3) ◽  
pp. 237-262
Author(s):  
M. L. Tolstykh ◽  
M. M. Pevzner ◽  
V. B. Naumov ◽  
A. D. Babansky

This paper presents the results of a study of melt inclusions in plagioclase, amphibole and pyroxene from Ichinsky volcano’s tephras of different age. Two types of melts have been identified, distinguished by different concentrations of potassium (K2O). Major and trace elements’ composition of these melts indicates that magma mixing was the dominating process in the Ichinsky magmatic system.


2019 ◽  
Author(s):  
Alla M. Logvinova ◽  
◽  
Richard Wirth ◽  
Alexey O. Serebriannikov ◽  
Nikolay V. Sobolev
Keyword(s):  

2018 ◽  
Vol 483 ◽  
pp. 162-173 ◽  
Author(s):  
Laura Créon ◽  
Gilles Levresse ◽  
Laurent Remusat ◽  
Hélène Bureau ◽  
Gerardo Carrasco-Núñez

2020 ◽  
Author(s):  
Bianca Németh ◽  
Kálmán Török ◽  
Eniko Bali ◽  
Zoltan Zajacz ◽  
Csaba Szabó

2011 ◽  
Vol 52 (11) ◽  
pp. 1334-1352 ◽  
Author(s):  
V.V. Sharygin ◽  
K. Kóthay ◽  
Cs. Szabó ◽  
T.Ju. Timina ◽  
K. Török ◽  
...  

Minerals ◽  
2019 ◽  
Vol 9 (7) ◽  
pp. 412 ◽  
Author(s):  
Vladislav Shatsky ◽  
Dmitry Zedgenizov ◽  
Alexey Ragozin ◽  
Viktoriya Kalinina

New findings of silicate-melt inclusions in two alluvial diamonds (from the Kholomolokh placer, northeastern Siberian Platform) are reported. Both diamonds exhibit a high degree of N aggregation state (60–70% B) suggesting their long residence in the mantle. Raman spectral analysis revealed that the composite inclusions consist of clinopyroxene and silicate glass. Hopper crystals of clinopyroxene were observed using scanning electron microscopy and energy-dispersive spectroscopic analyses; these are different in composition from the omphacite inclusions that co-exist in the same diamonds. The glasses in these inclusions contain relatively high SiO2, Al2O3, Na2O and, K2O. These composite inclusions are primary melt that partially crystallised at the cooling stage. Hopper crystals of clinopyroxene imply rapid cooling rates, likely related to the uplift of crystals in the kimberlite melt. The reconstructed composition of such primary melts suggests that they were formed as the product of metasomatised mantle. One of the most likely source of melts/fluids metasomatising the mantle could be a subducted slab.


Sign in / Sign up

Export Citation Format

Share Document