scholarly journals Ultrasound simulation technique as state-of-health estimation method of lithium-ion batteries

2021 ◽  
Author(s):  
J.P. Gaviria-Cardona ◽  
Michael Guzman-De Las Salas ◽  
Nicolas Montoya-Escobar ◽  
Whady Florez-Escobar ◽  
Raul Valencia-Cardona ◽  
...  

Ultrasound is a non-destructive technique recently proposed to estimate Lithium-ion batteries degradation. However, recent research has been devoted towards understanding the physical phenomena behind the ultrasonic wave propagation through a Lithium-ion battery. To achieve this, the second-order-scalar elastic and acoustic wave equations are solved with explicit and implicit finite difference method, considering the interfaces between materials with different physical properties. Results showed that implicit method presents less noise than the explicit scheme. In addition, changes in the physical properties of battery materials that occur in charge and discharge processes, highly affect the ultrasonic wave propagation inside the battery. Finally, this study demonstrates the feasibility of using numerical methods as a precursor of battery degradation estimator.

2021 ◽  
Author(s):  
J.P. Gaviria-Cardona ◽  
Michael Guzman-De Las Salas ◽  
Nicolas Montoya-Escobar ◽  
Whady Florez-Escobar ◽  
Raul Valencia-Cardona ◽  
...  

2016 ◽  
Vol 140 (5) ◽  
pp. 3710-3717 ◽  
Author(s):  
Toshiho Hata ◽  
Yoshiki Nagatani ◽  
Koki Takano ◽  
Mami Matsukawa

Author(s):  
Honglei Li ◽  
Liang Cong ◽  
Huazheng Ma ◽  
Weiwei Liu ◽  
Yelin Deng ◽  
...  

Abstract The rapidly growing deployment of lithium-ion batteries in electric vehicles is associated with a great waste of natural resource and environmental pollution caused by manufacturing and disposal. Repurposing the retired lithium-ion batteries can extend their useful life, creating environmental and economic benefits. However, the residual capacity of retired lithium-ion batteries is unknown and can be drastically different owing to various working history and calendar life. The main objective of this paper is to develop a fast and accurate capacity estimation method to classify the retired batteries by the remaining capacity. The hybrid technique of adaptive genetic algorithm and back propagation neural network is developed to estimate battery remaining capacity using the training set comprised of the selected characteristic parameters of incremental capacity curve of battery charging. Also, the paper investigated the correlation between characteristic parameters with capacity fade. The results show that capacity estimation errors of the proposed neural network are within 3%. Peak intensity of the incremental capacity curve has strong correlation with capacity fade. The findings also show that the translation of peak of the incremental capacity curve is strongly related with internal resistance.


Sign in / Sign up

Export Citation Format

Share Document