scholarly journals An Approach for the Accurate Investigation of Full-Scale Ship Boundary Layers and Wakes

2020 ◽  
Author(s):  
Blanca Pena ◽  
Ema Muk-Pavic ◽  
Giles Thomas ◽  
Patrick Fitzsimmons

Existing recommended practices in the literature do not provide clear and concise guidance for the selection of the most suitable numerical modelling strategy for investigating the boundary layer around a ship at full scale. For example, the International Towing Tank Conference procedure for calculating the nominal wake fields of full-scale ships does not clearly specify which turbulence modelling approach should be used to accurately represent the near-wall flow in the ship’s aft region.This paper presents a numerical approach that can accurately represent the boundary layer of full-scale ships. Three turbulence modelling strategies, suitable for the simulation of ship flows, have been assessed: k-ε, k-ω SST RANS and an IDDES formulation. Results from each method have been compared against the full-scale ship propeller torque data of the MV Regal, a 138m long general cargo vessel. Additionally, the capability of each turbulence strategy to resolve time-dependent features of the flow, such as the bilge vortex and its effect on the boundary layer velocity fields, has been evaluated.The results from this investigation show that the IDDES based numerical model replicated the sea trials measurements with the highest degree of accuracy. Furthermore, this study confirmed that the choice of turbulence strategy has a major impact on the full-scale velocity fields in the aft region of a ship.

2020 ◽  
Author(s):  
Blanca Pena ◽  
Ema Muk-Pavic ◽  
Patrick Fitzsimmons

This article presents a detailed numerical flow assessment of the boundary layer and wake of a full-scale cargo ship. The assessment was conducted using a sophisticated numerical approach that is able to resolve large turbulent scale vortices contained in the flow. The physical flow features of the boundary layer and wake investigated include mean-velocity, near-wall shear stress and vorticity fields. Also, the evolution of the wake from the thick boundary layer over the stern is displayed and analysed in the highest possible detail. Additionally, the detailed information extracted from the boundary layer and wake was the primary input to assess the overall hydrodynamic efficiency of the full-scale general cargo ship.The analysis method followed during this work has been a determinant factor for fast and efficient design of energy saving devices, propellers or rudders that work within the limits of the boundary layer of a ship. In particular, this thorough analysis avoided the necessity to use the commonly used practice of trial and error that is typically followed in the maritime industry.


1984 ◽  
Vol 106 (1) ◽  
pp. 70-78 ◽  
Author(s):  
A. J. Grass ◽  
P. W. J. Raven ◽  
R. J. Stuart ◽  
J. A. Bray

The paper summarizes the results of a laboratory study of the separate and combined effects of bed proximity and large velocity gradients on the frequency of vortex shedding from pipeline spans immersed in the thick boundary layers of tidal currents. This investigation forms part of a wider project concerned with the assessment of span stability. The measurements show that in the case of both sheared and uniform approach flows, with and without velocity gradients, respectively, the Strouhal number defining the vortex shedding frequency progressively increases as the gap between the pipe base and the bed is reduced below two pipe diameters. The maximum increase in vortex shedding Strouhal number, recorded close to the bed in an approach flow with large velocity gradients, was of the order of 25 percent.


Author(s):  
Ch. Hirsch ◽  
S. Kang ◽  
G. Pointel

The three-dimensional flow in centrifugal impellers is investigated on the basis of a detailed analysis of the results of numerical simulations. In order to gain confidence in this process, an in-depth validation is performed, based on computations of Krain’s centrifugal compressor and of a radial pump impeller, both with vaneless diffusers. Detailed comparisons with available experimental data provide high confidence in the numerical tools and results. The appearance of a high loss ‘wake’ region results from the transport of boundary layer material from the blade surfaces to the shroud region and its location depends on the balance between secondary and tip leakage flows and is not necessarily connected to 3D boundary layer separation. Although the low momentum spots near the shroud can interfere with 3D separated regions, the main outcome of the present analysis is that these are two distinct phenomena. Part I of this paper focuses on the validation base of the numerical approach, based on fine mesh simulations, while Part II presents an analysis of the different contributions to the secondary flows and attempts to estimate their effect on the overall flow pattern.


Author(s):  
Anil K. Tolpadi ◽  
James A. Tallman ◽  
Lamyaa El-Gabry

Conventional heat transfer design methods for turbine airfoils use 2-D boundary layer codes (BLC) combined with empiricism. While such methods may be applicable in the mid span of an airfoil, they would not be very accurate near the end-walls and airfoil tip where the flow is very three-dimensional (3-D) and complex. In order to obtain accurate heat transfer predictions along the entire span of a turbine airfoil, 3-D computational fluid dynamics (CFD) must be used. This paper describes the development of a CFD based design system to make heat transfer predictions. A 3-D, compressible, Reynolds-averaged Navier-Stokes CFD solver with k-ω turbulence modeling was used. A wall integration approach was used for boundary layer prediction. First, the numerical approach was validated against a series of fundamental airfoil cases with available data. The comparisons were very favorable. Subsequently, it was applied to a real engine airfoil at typical design conditions. A discussion of the features of the airfoil heat transfer distribution is included.


2017 ◽  
Vol 74 (6) ◽  
pp. 1879-1905 ◽  
Author(s):  
Feimin Zhang ◽  
Zhaoxia Pu

Abstract As a result of rapid changes in surface conditions when a landfalling hurricane moves from ocean to land, interactions between the hurricane and surface heat and moisture fluxes become essential components of its evolution and dissipation. With a research version of the Hurricane Weather Research and Forecasting Model (HWRF), this study examines the effects of the vertical eddy diffusivity in the boundary layer on the evolution of three landfalling hurricanes (Dennis, Katrina, and Rita in 2005). Specifically, the parameterization scheme of eddy diffusivity for momentum Km is adjusted with the modification of the mixed-layer velocity scale in HWRF for both stable and unstable conditions. Results show that the change in the Km parameter leads to improved simulations of hurricane track, intensity, and quantitative precipitation against observations during and after landfall, compared to the simulations with the original Km. Further diagnosis shows that, compared to original Km, the modified Km produces stronger vertical mixing in the hurricane boundary layer over land, which tends to stabilize the hurricane boundary layer. Consequently, the simulated landfalling hurricanes attenuate effectively with the modified Km, while they mostly inherit their characteristics over the ocean and decay inefficiently with the original Km.


2021 ◽  
Vol 2119 (1) ◽  
pp. 012154
Author(s):  
D M Bozheeva ◽  
D A Dekterev ◽  
Ar A Dekterev ◽  
A A Dekterev ◽  
D V Platonov

Abstract An experimental and computational study of the NACA0016 airfoil has been carried out for two cases: a stationary airfoil in an incoming flow on an aerodynamic stand and an airfoil moving along a circular trajectory in a stationary flow in a hydrodynamic stand. The Reynolds number for both cases was 60000. A qualitative comparison of the velocity fields for the cases with smooth airflow and boundary layer separation was carried out. It is shown that the used calculation methods describe the task under study with sufficient quality.


2019 ◽  
Vol 105 (5) ◽  
pp. 814-826 ◽  
Author(s):  
Yuejun Shi ◽  
Seongkyu Lee

This paper presents a new idea of reducing airfoil trailing edge noise using a small bump in the turbulent boundary layer. First, we develop and validate a new computational approach to predict airfoil trailing edge noise using steady RANS CFD, an empirical wall pressure spectrum model, and Howe's diff raction theory. This numerical approach enables fast and accurate predictions of trailing edge noise, which is used to study the noise reduction from the bump for various airfoil geometries and flow conditions at high Reynolds numbers. Three types of bumps, the suction-side bump, pressure-side bump, and both-side bumps, are studied. The results show that all types of bumps are able to reduce far-field noise up to 10 dB compared to clean airfoils, but their impacts are diff erent in terms of the eff ective frequency range. Also, bumps with four diff erent heights are compared with each other to investigate the eff ect of the height of bumps on noise reduction. It is demonstrated that a bump causes velocity deficit within the boundary layer near the wall. This velocity deficit results in reduced turbulence kinetic energy near the wall, which is responsible for trailing edge noise reduction. Overall, this paper demonstrates the potential of a boundary-layer bump in trailing edge noise reduction and sheds light on the physical mechanism of noise reduction with boundary-layer bumps.


Sign in / Sign up

Export Citation Format

Share Document