Simultaneous Turbulent Boundary Layer Velocity Profile and Scalar Turbulence Spectra with Linear Array-FLDI

2022 ◽  
Author(s):  
Kirk Davenport ◽  
Mark Gragston
1973 ◽  
Vol 95 (1) ◽  
pp. 61-67 ◽  
Author(s):  
F. J. Pierce ◽  
B. B. Zimmerman

A method is developed to infer a local wall shear stress from a two-dimensional turbulent boundary layer velocity profile using all near-wall data with the Spalding single formula law of the wall. The method is used to broaden the Clauser chart scheme by providing for the inclusion of data in the laminar sublayer and transition region, as well as the data in the fully turbulent near-wall flow region. For a skewed velocity profile typical of pressure driven three-dimensional turbulent boundary layer flows, the method is extended to infer a wall shear stress for a three-dimensional turbulent boundary layer. Either wall shear stress or shear velocity values are calculated for two different sets of three-dimensional experimental data, with good agreement found between calculated and experimental results.


1951 ◽  
Vol 18 (1) ◽  
pp. 95-100
Author(s):  
Donald Ross ◽  
J. M. Robertson

Abstract As an interim solution to the problem of the turbulent boundary layer in an adverse pressure gradient, a super-position method of analysis has been developed. In this method, the velocity profile is considered to be the result of two effects: the wall shear stress and the pressure recovery. These are superimposed, yielding an expression for the velocity profiles which approximate measured distributions. The theory also leads to a more reasonable expression for the wall shear-stress coefficient.


1958 ◽  
Vol 2 (04) ◽  
pp. 33-51
Author(s):  
Yun-Sheng Yu

Tests made on the turbulent boundary layer on a circular cylinder in axial flow at zero pressure gradient are described. From the measurements, similarity laws of the velocity profile are formulated, and various boundary-layer characteristics are evaluated and compared with the flatplate results. It is found that the effect of transverse curvature is to increase the surface shearing stress and to decrease the boundary-layer thickness, and that the latter variation is more pronounced than the former.


2005 ◽  
Vol 15 (3) ◽  
pp. 152-159 ◽  
Author(s):  
A. Krope ◽  
J. Krope ◽  
L.C. Lipus

Abstract A new model for mean velocity profile of turbulent water flow with added drag-reducing surfactants is presented in this paper. The general problem of drag due to frictional resistance is reviewed and drag reduction by the addition of polymers or surfactants is introduced. The model bases on modified Prandtl's mixing length hypothesis and includes three parameters, which depend on additives and can be evaluated by numerical simulation from experimental datasets. The advantage of the model in comparison with previously reported models is that it gives uniform curve for whole pipe section and can be determined for a new surfactant with less necessary measurements. The use of the model is demonstrated for surfactant Habon-G as an example.


2007 ◽  
Vol 129 (8) ◽  
pp. 1083-1100 ◽  
Author(s):  
Noor Afzal

A new approach to scaling of transitional wall roughness in turbulent flow is introduced by a new nondimensional roughness scale ϕ. This scale gives rise to an inner viscous length scale ϕν∕uτ, inner wall transitional variable, roughness friction Reynolds number, and roughness Reynolds number. The velocity distribution, just above the roughness level, turns out to be a universal relationship for all kinds of roughness (transitional, fully smooth, and fully rough surfaces), but depends implicitly on roughness scale. The open turbulent boundary layer equations, without any closure model, have been analyzed in the inner wall and outer wake layers, and matching by the Izakson-Millikan-Kolmogorov hypothesis leads to an open functional equation. An alternate open functional equation is obtained from the ratio of two successive derivatives of the basic functional equation of Izakson and Millikan, which admits two functional solutions: the power law velocity profile and the log law velocity profile. The envelope of the skin friction power law gives the log law, as well as the power law index and prefactor as the functions of roughness friction Reynolds number or skin friction coefficient as appropriate. All the results for power law and log law velocity and skin friction distributions, as well as power law constants are explicitly independent of the transitional wall roughness. The universality of these relations is supported very well by extensive experimental data from transitional rough walls for various different types of roughnesses. On the other hand, there are no universal scalings in traditional variables, and different expressions are needed for various types of roughness, such as inflectional roughness, monotonic roughness, and others. To the lowest order, the outer layer flow is governed by the nonlinear turbulent wake equations that match with the power law theory as well as log law theory, in the overlap region. These outer equations are in equilibrium for constant value of m, the pressure gradient parameter, and under constant eddy viscosity closure model, the analytical and numerical solutions are presented.


Author(s):  
John W. McClintic ◽  
Thomas E. Dyson ◽  
David G. Bogard ◽  
Sean D. Bradshaw

Boundary layer velocity and turbulence profiles were measured on the suction side of a scaled up, film-cooled turbine vane airfoil. There have been a number of previous studies of the velocity profile on a turbine vane, but few have taken velocity profile data with film cooling, and none have taken such data on the suction side of the vane. Velocity and turbulence profile data were taken at two locations on the suction side of the vane — one at a high curvature region and one further downstream in a low curvature region. Data were collected for high (20%) and low (0.5%) mainstream turbulence conditions. For the upstream, high curvature location, velocity and turbulence profiles were found with and without the showerhead blowing and within and outside of the merged showerhead coolant jet. The data for the low curvature, downstream location was taken with injection from the showerhead alone, a second upstream row of holes alone, and the combination of the two cases. It was found that the presence of an active upstream row of holes thickens the boundary layer and increases urms both within and beyond the extent of the boundary layer. Span-wise variations showed that these effects are strongest within the core of the coolant jets. At the downstream location, the boundary layer velocity profile was most strongly influenced by the row of holes immediately upstream of that location. Finally, turbulence integral length scale data showed the effect of large scale mainstream turbulence penetrating the boundary layer. The increase in turbulence, thickening of the boundary layer, and large scale turbulence all play important roles in row to row coolant interactions and affect the film cooling effectiveness.


1969 ◽  
Vol 73 (698) ◽  
pp. 143-147 ◽  
Author(s):  
M. K. Bull

Although a numerical solution of the turbulent boundary-layer equations has been achieved by Mellor and Gibson for equilibrium layers, there are many occasions on which it is desirable to have closed-form expressions representing the velocity profile. Probably the best known and most widely used representation of both equilibrium and non-equilibrium layers is that of Coles. However, when velocity profiles are examined in detail it becomes apparent that considerable care is necessary in applying Coles's formulation, and it seems to be worthwhile to draw attention to some of the errors and inconsistencies which may arise if care is not exercised. This will be done mainly by the consideration of experimental data. In the work on constant pressure layers, emphasis tends to fall heavily on the author's own data previously reported in ref. 1, because the details of the measurements are readily available; other experimental work is introduced where the required values can be obtained easily from the published papers.


Sign in / Sign up

Export Citation Format

Share Document