Elastic Performances of Short Pier Shear Wall Subjected to Lateral Loading

2011 ◽  
Vol 368-373 ◽  
pp. 1227-1230
Author(s):  
Shi Mei Liu ◽  
Dong Sheng Huang

The formulas to define the minimum ratio of length-to-thickness of the pier cross section of short-pier shear wall is presented, by which the short pier shear wall is distinguished from the irregular cross-section column frame numerically. According to the results of finite element analysis of typical short-pier shear walls, the elastic mechanical performances of them were investigated. Conclusions were achieved that the flange width hardly influence on the moment of piers but significantly influence on the magnitude of stresses in the horizontal section and the top displacements of walls; the deflection curve of short-pier shear wall is flexural-shearing type, equations and diagrams to define the position of the contra-flexural point in the curve are provided.

2019 ◽  
Author(s):  
Hossein Alimohammadi ◽  
Mostafa Dalvi Esfahani ◽  
Mohammadali Lotfollahi Yaghin

In this study, the seismic behavior of the concrete shear wall considering the opening with different shapes and constant cross-section has been studied, and for this purpose, several shear walls are placed under the increasingly non-linear static analysis (Pushover). These case studies modeled in 3D Abaqus Software, and the results of the ductility coefficient, hardness, energy absorption, added resistance, the final shape, and the final resistance are compared to shear walls without opening.


2018 ◽  
Vol 4 (11) ◽  
pp. 2667
Author(s):  
Hayder Fadhil ◽  
Amer Ibrahim ◽  
Mohammed Mahmood

Corrugated steel plate shear wall (CSPSW) is one of the lateral resistance systems which consists mainly of steel frame (beam and column) with vertical or horizontal corrugated steel plate connected to the frame by weld, bolts or both. This type of steel shear wall characterized by low cost and short construction time with high strength, ductility, initial stiffness and excellent ability to dissipate energy. The aim of this paper is to evaluate the effect of corrugation angle and its direction on the performance of CSPSW under cyclic loading. The Finite element analysis was employed to achieve the research aim. The FE models were validated with experimental data available in the literature. Results reveal that the corrugation angle has a clear influence on initial stiffness, strength, ductility, and energy dissipation of CSPSW. The optimum performance of CSPSW can be obtained with angles of 30o for CSPSW with vertical corrugation and 20o for CSPSW with horizontal corrugation. The use of CSPSW with vertical corrugation provides higher strength, stiffness, and ductility compared to CSPSW with horizontal corrugation. Therefore, it is recommended to use CSPSW with vertical corrugation.


2019 ◽  
Vol 11 (3) ◽  
pp. 867
Author(s):  
Yun Chen ◽  
Junzuo Li ◽  
Zheng Lu

The coupled shear wall with replaceable coupling beams is a current research hotspot, while still lacking comprehensive studies that combine both experimental and numerical approaches to describe the global performance of the structural system. In this paper, hybrid coupled shear walls (HSWs) with replaceable coupling beams (RCBs) are studied. The middle part of the coupling beam is replaced with a replaceable “fuse”. Four ½-scale coupled shear wall specimens including a conventional reinforced concrete shear wall (CSW) and three HSWs (F1SW/F2SW/F3SW) with different kinds of replaceable “fuses” (Fuse 1/Fuse 2/Fuse 3) are tested through cyclic loading. Fuse 1 is an I-shape steel with a rhombic opening at the web; Fuse 2 is a double-web I-shape steel with lead filled in the gap between the two webs; Fuse 3 consists of two parallel steel tubes filled by lead. The comparison of seismic properties of the four shear walls in terms of failure mechanism, hysteretic response, strength degradation, stiffness degradation, energy consumption, and strain response is presented. The nonlinear finite element analysis of four shear walls is conducted by ABAQUS software. The deformation process, yielding sequence of components, skeleton curves, and damage distribution of the walls are simulated and agree well with the experimental results. The primary benefit of HSWs is that the damage of the coupling beam is concentrated at the replaceable “fuse”, while other parts remain intact. Besides, because the “fuse” can dissipate much energy, the damage of the wall-piers is also alleviated. In addition, among the three HSWs, F1SW possesses the best ductility and load retention capacity while F2SW possesses the best energy dissipation capacity. Based on this comprehensive study, some suggestions for the conceptual design of HSWs are further proposed.


2014 ◽  
Vol 2014 ◽  
pp. 1-18
Author(s):  
G. Muthukumar ◽  
Manoj Kumar

Shear walls have been conferred as a major lateral load resisting element in a building in any seismic prone zone. It is essential to determine behavior of shear wall in the preelastic and postelastic stage. Shear walls may be provided with openings due to functional requirement of the building. The size and location of opening may play a significant role in the response of shear walls. Though it is a well known fact that size of openings affects the structural response of shear walls significantly, there is no clear consensus on the behavior of shear walls under different opening locations. The present study aims to study the dynamic behavior of shear walls under various opening locations using nonlinear finite element analysis using degenerated shell element with assumed strain approach. Only material nonlinearity has been considered using plasticity approach. A five-parameter Willam-Warnke failure criterion is considered to define the yielding/crushing of the concrete with tensile cutoff. The time history responses have been plotted for all opening cases with and without ductile detailing. The analysis has been done for different damping ratios. It has been observed that the large number of small openings resulted in better displacement response.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Jing Di ◽  
Hongliang Zuo

PurposeThe sheathing panels of traditional light wood frame shear walls mainly use oriented strand board (OSB) panels, and the damage of the traditional walls is mainly caused by the tear failure at the bottom corner of the OSB panel. In order to improve the lateral performance of the traditional light wood frame shear wall, a new type of end narrow panels reinforced light wood frame shear wall is proposed.Design/methodology/approachThe monotonic loading tests and finite element analysis of nine groups of walls, with different types of end narrow panel, types of fasteners used on the end narrow panels and the end narrow panels edge fastener spacing, are carried out. The effects of different characters on lateral performance of light wood frame shear walls are reported and discussed.FindingsThe failure modes of the wall reinforced by parallel strand bamboo narrow panels with 150 mm edge nails spacing are similar to the traditional wall. Conversely, the failure modes of other groups of walls reinforced by end narrow panels are the tears of the bottom narrow panel or the bottom beam. The end narrow panel reinforced light wood frame shear wall can make full use of the material property of sheathing panels. Compared with the lateral performance of traditional walls, the new-type end narrow panels reinforced walls have better lateral performance.Originality/valueA new type of end narrow panels reinforced light wood frame shear wall is proposed, which can enhance the lateral performance of the traditional light wood frame shear wall. The new-type walls have advantages of convenient operation, manufacture cost saving and important value of engineering application.


2013 ◽  
Vol 275-277 ◽  
pp. 1176-1179
Author(s):  
Wan Yun Yin ◽  
Yun Lin Liu ◽  
Juan Ye ◽  
Jian Hua Cui ◽  
Ren Cai Jin ◽  
...  

Based on the needs of housing industrialization, prefabricated experimental study on performance of shear wall structure is essential. This article describes the specific steps 、experimental data processing method and finite element analysis of prefabricated shear walls and cast shear wall under the low cyclic reversed loading. It is to solve the error of the measurement results from error experimental methods of operation. Finally, we also look forward to the expected results of the comparative test of the shear wall structure.


2012 ◽  
Vol 549 ◽  
pp. 807-811
Author(s):  
Li Jian Zhou ◽  
Ming Kang Shan ◽  
Jin Zhou He ◽  
Yuan Gang Fan

Established three-dimensional calculation model of three large space shear wall structures of different thickness, using finite element software ANSYS to calculate the seismic response analysis of these models,obtained time-displacement curves and stress distribution under earthquake structures of three large space shear walls of different thickness, and its comparative analysis; shows practical significance of large space shear wall structure.


2015 ◽  
Vol 1120-1121 ◽  
pp. 1516-1519
Author(s):  
Yong Song Shao ◽  
Feng Ru Shao

Due to mechanical performances of brace and steel plate, mechanical properties of semi-rigid joints and its construction and installation, semi-rigid steel frame-braced steel plate shear wall system is proposed. Nonlinear static analysis with parameters (thickness of plate, type of brace, size of brace and the ratio of span to height) changed of a single-span and single-floor semi-rigid steel frame-braced steel plate shear wall system illustrates that braced steel plate shear walls contributes obviously to bearing capacity and lateral rigidity of semi-rigid steel frame. Also, the finite element analysis (by ANSYS) show that semi-rigid steel frame-braced steel plate shear wall system has excellent ductility.


2013 ◽  
Vol 368-370 ◽  
pp. 1539-1546
Author(s):  
Can Song ◽  
Feng Li ◽  
Hua Jing Zhao

In order to improve the lateral deformation capacity of the high strength concrete shear wall, partially confined end-zones are usually set in the both ends of the shear wall cross-section. According to the experimental results of 15 high strength concrete shear walls with flexural (flexural-shear) failure, the moment - curvature skeleton curve of this shear wall cross-section is simplified as four linear through cracking point, yield point, peak point and ultimate point. Based on the plane-section assumption, the bending moment and curvature expressions at cracking, yield, peak and ultimate state are derived. At the same time, the effect of partially confined end-zones on peak and ultimate moment-curvature are taken into account. The analysis results show that, the calculated values are in good consistent with the experimental data.


Sign in / Sign up

Export Citation Format

Share Document