scholarly journals The role of concrete in life cycle greenhouse gas emissions of US buildings and pavements

2020 ◽  
Author(s):  
Jeremy Gregory ◽  
Hessam Azarijafari ◽  
Ehsan Vahidi ◽  
Fengdi Guo ◽  
Franz Ulm ◽  
...  

Concrete is a critical component of deep decarbonization efforts because it impacts the building, transportation, and industrial sectors. We use a bottom-up model of current and future building and pavement stocks and construction in the US to contextualize the role of concrete in greenhouse gas (GHG) reductions strategies under projected and ambitious scenarios, including embodied and use phases of the structures’ life cycle. We show that projected improvements in the building sector result in a reduction of 47% of GHG emissions in 2050 relative to 2016 levels, whereas ambitious improvements result in a 56% reduction in 2050, which is 22 Gt cumulative saving. The pavements sector shows a larger difference between the two scenarios with a 20% reduction of GHG emissions for projected improvements and a 68% reduction under the ambitious scenario, which is approximately 1.7 Gt. Over 70% of future emissions from new construction are from the use phase.

2021 ◽  
Vol 118 (37) ◽  
pp. e2021936118
Author(s):  
Jeremy Gregory ◽  
Hessam AzariJafari ◽  
Ehsan Vahidi ◽  
Fengdi Guo ◽  
Franz-Josef Ulm ◽  
...  

Concrete is a critical component of deep decarbonization efforts because of both the scale of the industry and because of how its use impacts the building, transportation, and industrial sectors. We use a bottom-up model of current and future building and pavement stocks and construction in the United States to contextualize the role of concrete in greenhouse gas (GHG) reductions strategies under projected and ambitious scenarios, including embodied and use phases of the structures’ life cycle. We show that projected improvements in the building sector result in a reduction of 49% of GHG emissions in 2050 relative to 2016 levels, whereas ambitious improvements result in a 57% reduction in 2050, which is 22.5 Gt cumulative saving. The pavements sector shows a larger difference between the two scenarios with a 14% reduction of GHG emissions for projected improvements and a 65% reduction under the ambitious scenario, which is ∼1.35 Gt. This reduction occurs despite the fact that concrete usage in 2050 in the ambitious scenario is over three times that of the projected scenario because of the ways in which concrete lowers use phase emissions. Over 70% of future emissions from new construction are from the use phase.


BioResources ◽  
2020 ◽  
Vol 15 (2) ◽  
pp. 3899-3914
Author(s):  
Kristen E. Tomberlin ◽  
Richard Venditti ◽  
Yuan Yao

Greenhouse gas (GHG) emission levels are causing concern as climate change risks are growing, emphasizing the importance of GHG research for better understanding of emission sources. Previous studies on GHG emissions for the pulp and paper industry have ranged in scope from global to regional to site-specific. This study addresses the present knowledge gap of how GHG emissions vary among paper grades in the US. A cradle-to-gate life cycle carbon analysis for 252 mills in the US was performed by integrating large datasets at the production line level. The results indicated that one metric ton of paper product created a production weighted average of 942 kg of carbon dioxide equivalent (kg CO2eq) of GHG emissions. Greenhouse gas emissions varied by pulp and paper grade, from 608 kg CO2eq per metric ton of product to 1978 kg CO2eq per metric ton of product. Overall, fuels were the greatest contributor to the GHG emissions and should be the focus of emission reduction strategies across pulp and paper grades.


2008 ◽  
Vol 57 (11) ◽  
pp. 1683-1692 ◽  
Author(s):  
Andrea Tilche ◽  
Michele Galatola

Anaerobic digestion is a well known process that (while still capable of showing new features) has experienced several waves of technological development. It was “born” as a wastewater treatment system, in the 1970s showed promise as an alternative energy source (in particular from animal waste), in the 1980s and later it became a standard for treating organic-matter-rich industrial wastewater, and more recently returned to the market for its energy recovery potential, making use of different biomasses, including energy crops. With the growing concern around global warming, this paper looks at the potential of anaerobic digestion in terms of reduction of greenhouse gas (GHG) emissions. The potential contribution of anaerobic digestion to GHG reduction has been computed for the 27 EU countries on the basis of their 2005 Kyoto declarations and using life cycle data. The theoretical potential contribution of anaerobic digestion to Kyoto and EU post-Kyoto targets has been calculated. Two different possible biogas applications have been considered: electricity production from manure waste, and upgraded methane production for light goods vehicles (from landfill biogas and municipal and industrial wastewater treatment sludges). The useful heat that can be produced as by-product from biogas conversion into electricity has not been taken into consideration, as its real exploitation depends on local conditions. Moreover the amount of biogas already produced via dedicated anaerobic digestion processes has also not been included in the calculations. Therefore the overall gains achievable would be even higher than those reported here. This exercise shows that biogas may considerably contribute to GHG emission reductions in particular if used as a biofuel. Results also show that its use as a biofuel may allow for true negative GHG emissions, showing a net advantage with respect to other biofuels. Considering also energy crops that will become available in the next few years as a result of Common Agricultural Policy (CAP) reform, this study shows that biogas has the potential of covering almost 50% of the 2020 biofuel target of 10% of all automotive transport fuels, without implying a change in land use. Moreover, considering the achievable GHG reductions, a very large carbon emission trading “value” could support the investment needs. However, those results were obtained through a “qualitative” assessment. In order to produce robust data for decision makers, a quantitative sustainability assessment should be carried out, integrating different methodologies within a life cycle framework. The identification of the most appropriate policy for promoting the best set of options is then discussed.


2019 ◽  
Vol 230 ◽  
pp. 1156-1164 ◽  
Author(s):  
Xin Xu ◽  
Mehdi Akbarian ◽  
Jeremy Gregory ◽  
Randolph Kirchain

2020 ◽  
Vol 12 (14) ◽  
pp. 5838
Author(s):  
Lars Reimer ◽  
Alexander Kaluza ◽  
Felipe Cerdas ◽  
Jens Meschke ◽  
Thomas Vietor ◽  
...  

The reduction of greenhouse gas (GHG) emissions over the entire life cycle of vehicles has become part of the strategic objectives in automotive industry. In this regard, the design of future body parts should be carried out based on information of life cycle GHG emissions. The substitution of steel towards lightweight materials is a major trend, with the industry undergoing a fundamental shift towards the introduction of electric vehicles (EV). The present research aims to support the conceptual design of body parts with a combined perspective on mechanical performance and life cycle GHG emissions. Particular attention is paid to the fact that the GHG impact of EV in the use phase depends on vehicle-specific factors that may not be specified at the conceptual design stage of components, such as the market-specific electricity mix used for vehicle charging. A methodology is proposed that combines a simplified numerical design of concept alternatives and an analytic approach estimating life cycle GHG emissions. It is applied to a case study in body part design based on a set of principal geometries and load cases, a range of materials (aluminum, glass and carbon fiber reinforced plastics (GFRP, CFRP) as substitution to a steel reference) and different use stage scenarios of EV. A new engineering chart was developed, which helps design engineers to compare life cycle GHG emissions of lightweight material concepts to the reference. For body shells, the replacement of the steel reference with aluminum or GFRP shows reduced lifecycle GHG emissions for most use phase scenarios. This holds as well for structural parts being designed on torsional stiffness. For structural parts designed on tension/compression or bending stiffness CFRP designs show lowest lifecycle GHG emissions. In all cases, a high share of renewable electricity mix and a short lifetime pose the steel reference in favor. It is argued that a further elaboration of the approach could substantially increase transparency between design choices and life cycle GHG emissions.


Author(s):  
Ching-Shin Norman Shiau ◽  
Scott B. Peterson ◽  
Jeremy J. Michalek

Plug-in hybrid electric vehicle (PHEV) technology has the potential to help address economic, environmental, and national security concerns in the United States by reducing operating cost, greenhouse gas (GHG) emissions and petroleum consumption from the transportation sector. However, the net effects of PHEVs depend critically on vehicle design, battery technology, and charging frequency. To examine these implications, we develop an integrated optimization model utilizing vehicle physics simulation, battery degradation data, and U.S. driving data to determine optimal vehicle design and allocation of vehicles to drivers for minimum life cycle cost, GHG emissions, and petroleum consumption. We find that, while PHEVs with large battery capacity minimize petroleum consumption, a mix of PHEVs sized for 25–40 miles of electric travel produces the greatest reduction in lifecycle GHG emissions. At today’s average US energy prices, battery pack cost must fall below $460/kWh (below $300/kWh for a 10% discount rate) for PHEVs to be cost competitive with ordinary hybrid electric vehicles (HEVs). Carbon allowance prices have marginal impact on optimal design or allocation of PHEVs even at $100/tonne. We find that the maximum battery swing should be utilized to achieve minimum life cycle cost, GHGs, and petroleum consumption. Increased swing enables greater all-electric range (AER) to be achieved with smaller battery packs, improving cost competitiveness of PHEVs. Hence, existing policies that subsidize battery cost for PHEVs would likely be better tied to AER, rather than total battery capacity.


Sign in / Sign up

Export Citation Format

Share Document