scholarly journals Engineering integrations, potential applications, and outlooks of Li-ion batteries

2020 ◽  
Author(s):  
Hsien-Ching Chung

Owing to the rapid development of renewable energy and the popularity of electric vehicles, Lithium-ion (Li-ion) batteries are intensively used, causing more researches on safety standards, repurposing batteries, failure analysis, as well as next-generation energy materials, such as graphene and other two-dimensional materials. In this work, the engineering integrations on combining Li-ion battery cells to an energy storage system (ESS) are introduced. The battery management system (BMS) plays an important role in using the battery system efficiently and safely. The energy management system (EMS) can well-integrate the ESS and other systems, such as renewable power sources and loads. Current potential applications for power and stationary application on various size scales are demonstrated. The outlooks on the future of Li-ion batteries are given at last.-------------------[About this talk]Dr. Hsien-Ching Chung was invited to give a talk about "Engineering integrations, potential applications, and outlooks of Li-ion batteries" in the conference, "Taiwan-Vietnam Joint International Conference on Emerging Materials and Batteries (ICMB 2020)." The conference was held at National Cheng Kung University, Tainan, Taiwan on Nov. 26~28, 2020. It's a good opportunity to realize fundamental researches and new technologies in the battery industry and the future of the energy industry.

2021 ◽  
Vol 2089 (1) ◽  
pp. 012017
Author(s):  
Ramu Bhukya ◽  
Praveen Kumar Nalli ◽  
Kalyan Sagar Kadali ◽  
Mahendra Chand Bade

Abstract Now a days, Li-ion batteries are quite possibly the most exceptional battery-powered batteries; these are drawing in much consideration from recent many years. M Whittingham first proposed lithium-ion battery technology in the 1970s, using titanium sulphide for the cathode and lithium metal for the anode. Li-ion batteries are the force to be reckoned with for the advanced electronic upset in this cutting-edge versatile society, solely utilized in cell phones and PC computers. A battery is a Pack of cells organized in an arrangement/equal association so the voltage can be raised to the craving levels. Lithium-ion batteries, which are completely utilised in portable gadgets & electric vehicles, are the driving force behind the digital technological revolution in today’s mobile societies. In order to protect and maintain voltage and current of the battery with in safe limit Battery Management System (BMS) should be used. BMS provides thermal management to the battery, safeguarding it against over and under temperature and also during short circuit conditions. The battery pack is designed with series and parallel connected cells of 3.7v to produce 12v. The charging and releasing levels of the battery pack is indicated by interfacing the Arduino microcontroller. The entire equipment is placed in a fiber glass case (looks like aquarium) in order to protect the battery from external hazards to design an efficient Lithium-ion battery by using Battery Management System (BMS). We give the supply to the battery from solar panel and in the absence of this, from a regular AC supply.


2015 ◽  
Vol 733 ◽  
pp. 714-717 ◽  
Author(s):  
Ping Yang ◽  
Hou Yu Yu ◽  
Yong Gang Yan

In order to ensure good performance and extend the lifetime of li-ion batteries in electric cars, effective real-time monitoring and management must be valued. This paper designs an electric vehicle battery management system based on a smart battery monitoring chip, DS2438. It integrates the measurement of battery's temperature, voltage, current, and power as a whole, which not only simplifies the circuit, but also saves system cost. The battery’s SOC (State Of Charge) can be easily estimated and displayed in this design. It improves the reliability of power battery pack and prolonged its life, which can be used as reference to battery management system design and application.


2019 ◽  
Author(s):  
Mehrdad Zandigohar ◽  
Nima Lotfi

Abstract Li-ion batteries have gained increased popularity in the past few decades as the main source in various mobile and stationary energy storage applications. Battery management system design, especially fault diagnosis, however, is still a challenge regarding Li-ion batteries. Traditional Li-ion BMSs rely on measurements from current, voltage, and temperature sensors sparsely located throughout the battery pack. Such a BMS is not capable of predicting battery behavior under various operating conditions; moreover, it cannot account for internal discrepancies among battery cells, incipient faults, the distributed nature of battery parameters and states, and the propagation effects inside a battery pack. Although majority of these effects have already been observed and reported, they are either studied in electrochemistry laboratories using in-situ techniques and detailed theoretical analysis or in practical manufacturing settings by engineers and technicians, which are typically considered proprietary information. The aim of this paper is to bridge the gap between these two domains. In other words, a detailed electrochemical/thermal simulation of a Li-ion battery cell under healthy and faulty conditions is performed to provide a better understanding of the exact spatial requirements for an efficient and reliable thermal management system for Li-ion batteries. The results of this study are specifically of great importance for battery fault detection and identification, mainly due to the recent advancements in distributed sensing technologies such as fiber optics.


2014 ◽  
Vol 540 ◽  
pp. 267-271
Author(s):  
Xin Liu ◽  
Lin Yan Li ◽  
Fan Yun Zeng ◽  
Xue Jun Wang ◽  
Sheng Ming Xu

With the rapid development and wide application of Li-ion batteries, cathode materials containing value metals Co, Ni and Mn are blended by several kind of metal oxide presently for pursuing high safe stability and low cost. The composition of spent Li-ion batteries has become complicated and optimum leaching condition varied. In this paper, leaching process for the mixture of pure LiCoO2and Li (Ni1/3Co1/3Mn1/3)O2was studied. With an increase in component of LiCoO2in mixed materials, the optimum leaching condition varied as: temperature from 60°C to 90°C, H2O2addition amount from 0.54 to 0.75ml/g and liquid-solid ratio from 10 to 20. According to this result, a real mixed spent batteries materials was recovered by being leached in 2M H2SO4at temperature of 90°C, liquid-solid ratio 20 and 0.6ml/g H2O2added. The leaching efficiencies of Co, Ni, Mn, Li were 96.88%, 93.71%, 92.12%, 99.43% respectively. Cu, Al and Fe in solution were removed by precipitation and solvent extraction. Finally, Ni, Co, Mn were extracted by D2EHPA for separating with Na+and other impurities, which is used as a raw materials for preparation of cathode active materials in batteries.


Author(s):  
Puspita Ningrum ◽  
Novie Ayub Windarko ◽  
Suhariningsih Suhariningsih

Abstract— Battery is one of the important components in the development of renewable energy technology. This paper presents a method for estimating the State of Charge (SoC) for a 4Ah Li-ion battery. State of Charge (SoC) is the status of the capacity in the battery in the form of a percentage which makes it easier to monitor the battery during use. Coulomb calculations are widely used, but this method still contains errors during integration. In this paper, SoC measurement using Open Circuit Voltage Compensation is used for the determination of the initial SoC, so that the initial SoC reading is more precise, because if the initial SoC reading only uses a voltage sensor, the initial SoC reading is less precise which affects the next n second SoC reading. In this paper, we present a battery management system design or commonly known as BMS (Battery Management System) which focuses on the monitoring function. BMS uses a voltage sensor in the form of a voltage divider circuit and an ACS 712 current sensor to send information about the battery condition to the microcontroller as the control center. Besides, BMS is equipped with a protection relay to protect the battery. The estimation results of the 12volt 4Ah Li-ion battery SoC with the actual reading show an error of less than 1%.Keywords—Battery Management System, Modified Coulomb Counting, State of Charge.


Author(s):  
Sergey Khantimerov ◽  
Ranis Fatykhov ◽  
Nail Suleimanov

Abstract In this paper, the possibility of using lithium-ion batteries in hybrid stand-alone power sources is considered. The article gives a comparative analysis of the energy and performance characteristics, the service life of lead-acid and lithium-ion batteries. It is shown that the longer service life and the specific energy density, the absence of the need for constant monitoring of the main parameters and the ability to preserve the original capacity at increased discharge currents, open the possibility of using lithium-ion batteries in hybrid stand-alone power sources.


MRS Advances ◽  
2016 ◽  
Vol 1 (45) ◽  
pp. 3043-3048 ◽  
Author(s):  
Kwai S. Chan ◽  
Michael A. Miller ◽  
Carol Ellis-Terrell ◽  
Candace K. Chan

ABSTRACTSeveral processing methods were developed and evaluated for synthesizing empty silicon clathrates. A solution synthesis method based on the Hofmann-elimination oxidation reaction was successfully utilized to produce 20 mg of empty Si46. Half-cells using the Si46 electrodes were successfully cycled for 1000 cycles at rate of 5.3C. The capacity of the Si46 electrode in long-term tests was 675 mAh/g at the 4th cycle, but increased to 809 mAh/g at 50 cycles. The corresponding Coulombic efficiency was better than 99%. The capacity dropped from 809 to 553 mAh/g after 1000 cycles while maintaining a 99% Coulombic efficiency. In comparison, a Ba8Al8Si38 electrode could be cycled for about 200 cycles with a lower capacity and Coulombic efficiency. Potential applications of empty silicon clathrates as anode materials in Li-ion batteries are discussed.


Sign in / Sign up

Export Citation Format

Share Document