scholarly journals Methodological Remarks Regarding Optimal Stopping Tasks and the Implications for Sampling Biases

2021 ◽  
Author(s):  
Didrika Sahira van de Wouw ◽  
Ryan McKay ◽  
Nicholas Furl

This paper investigates a type of optimal stopping problem where options are presented in sequence and, once an option has been rejected, it is impossible to go back to it. With previous research finding mixed results of undersampling and oversampling biases on these kinds of optimal stopping tasks, the question remaining is what causes people to sample too much or too little compared to models of optimality? In two pilot studies and a main study, we explored task features that could lead to over- versus undersampling on number-based tasks. We found that, regardless of task features, there were no significant differences in human sampling rate across conditions. Nevertheless, we observed differences in sampling biases across conditions due to varying sampling rates of the optimal model. Our optimal model, like most models used for this type of optimal stopping problem, requires that researchers specify the mean and variance of a theoretical distribution, from which the options are generated. We show that different ways of specifying this generating distribution can lead to different model sampling rates, and consequently, differences in sampling biases. This highlights that a correct specification of the generating distribution is critical when investigating sampling biases on optimal stopping tasks.

1987 ◽  
Vol 24 (1) ◽  
pp. 77-87 ◽  
Author(s):  
Steinar Engen ◽  
Eva Seim

The class of stopping rules for a sequence of i.i.d. random variables with partially known distribution is restricted by requiring invariance with respect to certain transformations. Invariant stopping rules have an intuitive appeal when the optimal stopping problem is invariant with respect to the actual gain function. Uniformly best invariant stopping rules are derived for the gamma distribution with known shape parameter and unknown scale parameter, for the uniform distribution with both endpoints unknown, and for the normal distribution with unknown mean and variance. Some comparisons with previously published results are made.


1987 ◽  
Vol 24 (01) ◽  
pp. 77-87
Author(s):  
Steinar Engen ◽  
Eva Seim

The class of stopping rules for a sequence of i.i.d. random variables with partially known distribution is restricted by requiring invariance with respect to certain transformations. Invariant stopping rules have an intuitive appeal when the optimal stopping problem is invariant with respect to the actual gain function. Uniformly best invariant stopping rules are derived for the gamma distribution with known shape parameter and unknown scale parameter, for the uniform distribution with both endpoints unknown, and for the normal distribution with unknown mean and variance. Some comparisons with previously published results are made.


Author(s):  
Hung Phuoc Truong ◽  
Thanh Phuong Nguyen ◽  
Yong-Guk Kim

AbstractWe present a novel framework for efficient and robust facial feature representation based upon Local Binary Pattern (LBP), called Weighted Statistical Binary Pattern, wherein the descriptors utilize the straight-line topology along with different directions. The input image is initially divided into mean and variance moments. A new variance moment, which contains distinctive facial features, is prepared by extracting root k-th. Then, when Sign and Magnitude components along four different directions using the mean moment are constructed, a weighting approach according to the new variance is applied to each component. Finally, the weighted histograms of Sign and Magnitude components are concatenated to build a novel histogram of Complementary LBP along with different directions. A comprehensive evaluation using six public face datasets suggests that the present framework outperforms the state-of-the-art methods and achieves 98.51% for ORL, 98.72% for YALE, 98.83% for Caltech, 99.52% for AR, 94.78% for FERET, and 99.07% for KDEF in terms of accuracy, respectively. The influence of color spaces and the issue of degraded images are also analyzed with our descriptors. Such a result with theoretical underpinning confirms that our descriptors are robust against noise, illumination variation, diverse facial expressions, and head poses.


Animals ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 568
Author(s):  
Sabine G. Gebhardt-Henrich ◽  
Ariane Stratmann ◽  
Marian Stamp Dawkins

Group level measures of welfare flocks have been criticized on the grounds that they give only average measures and overlook the welfare of individual animals. However, we here show that the group-level optical flow patterns made by broiler flocks can be used to deliver information not just about the flock averages but also about the proportion of individuals in different movement categories. Mean optical flow provides information about the average movement of the whole flock while the variance, skew and kurtosis quantify the variation between individuals. We correlated flock optical flow patterns with the behavior and welfare of a sample of 16 birds per flock in two runway tests and a water (latency-to-lie) test. In the runway tests, there was a positive correlation between the average time taken to complete the runway and the skew and kurtosis of optical flow on day 28 of flock life (on average slow individuals came from flocks with a high skew and kurtosis). In the water test, there was a positive correlation between the average length of time the birds remained standing and the mean and variance of flock optical flow (on average, the most mobile individuals came from flocks with the highest mean). Patterns at the flock level thus contain valuable information about the activity of different proportions of the individuals within a flock.


Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 955
Author(s):  
Alamir Elsayed ◽  
Mohamed El-Beltagy ◽  
Amnah Al-Juhani ◽  
Shorooq Al-Qahtani

The point kinetic model is a system of differential equations that enables analysis of reactor dynamics without the need to solve coupled space-time system of partial differential equations (PDEs). The random variations, especially during the startup and shutdown, may become severe and hence should be accounted for in the reactor model. There are two well-known stochastic models for the point reactor that can be used to estimate the mean and variance of the neutron and precursor populations. In this paper, we reintroduce a new stochastic model for the point reactor, which we named the Langevin point kinetic model (LPK). The new LPK model combines the advantages, accuracy, and efficiency of the available models. The derivation of the LPK model is outlined in detail, and many test cases are analyzed to investigate the new model compared with the results in the literature.


1991 ◽  
Vol 28 (3) ◽  
pp. 529-538
Author(s):  
M. P. Quine

Points arrive in succession on an interval and immediately ‘cover' a region of length ½ to each side (less if they are close to the boundary or to a covered part). The location of a new point is uniformly distributed on the uncovered parts. We study the mean and variance of the total number of points ever formed, in particular as a → 0, in which case we also establish asymptotic normality.


Diagnostics ◽  
2021 ◽  
Vol 11 (6) ◽  
pp. 1121
Author(s):  
Georgios S. Ioannidis ◽  
Søren Christensen ◽  
Katerina Nikiforaki ◽  
Eleftherios Trivizakis ◽  
Kostas Perisinakis ◽  
...  

The aim of this study was to define lower dose parameters (tube load and temporal sampling) for CT perfusion that still preserve the diagnostic efficiency of the derived parametric maps. Ninety stroke CT examinations from four clinical sites with 1 s temporal sampling and a range of tube loads (mAs) (100–180) were studied. Realistic CT noise was retrospectively added to simulate a CT perfusion protocol, with a maximum reduction of 40% tube load (mAs) combined with increased sampling intervals (up to 3 s). Perfusion maps from the original and simulated protocols were compared by: (a) similarity using a voxel-wise Pearson’s correlation coefficient r with in-house software; (b) volumetric analysis of the infarcted and hypoperfused volumes using commercial software. Pearson’s r values varied for the different perfusion metrics from 0.1 to 0.85. The mean slope of increase and cerebral blood volume present the highest r values, remaining consistently above 0.7 for all protocol versions with 2 s sampling interval. Reduction of the sampling rate from 2 s to 1 s had only modest impacts on a TMAX volume of 0.4 mL (IQR −1–3) (p = 0.04) and core volume of −1.1 mL (IQR −4–0) (p < 0.001), indicating dose savings of 50%, with no practical loss of diagnostic accuracy. The lowest possible dose protocol was 2 s temporal sampling and a tube load of 100 mAs.


Sign in / Sign up

Export Citation Format

Share Document