scholarly journals Retrospective surprise: A computational component for active inference

2019 ◽  
Author(s):  
Kentaro Katahira ◽  
Yoshihiko Kunisato ◽  
Tsukasa Okimura ◽  
Yuichi Yamashita

In the free energy principle (FEP), proposed by Friston, it is supposed that agents seek to minimize the “surprise”–the negative log (marginal) likelihood of observations (i.e., sensory stimuli)–given the agents' current belief. This is achieved by minimizing the free energy, which provides an upper bound on the surprise. The FEP has been applied to action selection in a framework called “active inference,” where agents are supposed to select an action so that they minimize the “expected free energy” (EFE). While the FEP and active inference have attracted the attention of researchers in a wide range of fields such as psychology and psychiatry, as well as neuroscience, it is not clear which psychological construct EFE is related to. To facilitate the discussion and interpretation of psychological processes underlying active inference, we introduce a computational component termed the “retrospective (or residual) surprise,” which is the surprise of an observation after updating the belief given the observation itself. We show that the predicted retrospective surprise (PRS) provides a lower bound on EFE: EFE is always larger than PRS. We illustrate the properties of EFE and PRS using examples of inference for a binary hidden cause given a binary observation. Essentially, EFE and PRS show similar behavior; however, in certain situations, they provide different predictions regarding action selection. This study also provides insights into the mechanism of active inference based on EFE.

2019 ◽  
Author(s):  
Beren Millidge

This paper combines the active inference formulation of action (Friston, 2009) with hierarchical predictive coding models (Friston, 2003) to provide a proof-of-concept implementation of an active inference agent able to solve a common reinforcement learning baseline -- the cart-pole environment in OpenAI gym. It demonstrates empirically that predictive coding and active inference approaches can be successfully scaled up to tasks more challenging than the mountain car (Friston 2009, 2012). We show that hierarchical predictive coding models can be learned from scratch during the task, and can successfully drive action selection via active inference. To our knowledge, it is the first implemented active inference agent to combine active inference with a hierarchical predictive coding perceptual model. We also provide a tutorial walk-through of the free-energy principle, hierarchical predictive coding, and active inference, including an in-depth derivation of our agent.


2019 ◽  
Author(s):  
Manuel Baltieri ◽  
Christopher Buckley

The free energy principle describes cognitive functions such as perception, action, learning and attention in terms of surprisal minimisation. Under simplifying assumptions, agents are depicted as systems minimising a weighted sum of prediction errors encoding the mismatch between incoming sensations and an agent's predictions about such sensations. The ``dark room'' is defined as a state that an agent would occupy should it only look to minimise this sum of prediction errors. This (paradoxical) state emerges as the contrast between the attempts to describe the richness of human and animal behaviour in terms of surprisal minimisation and the trivial solution of a dark room, where the complete lack of sensory stimuli would provide the easiest way to minimise prediction errors, i.e., to be in a perfectly predictable state of darkness with no incoming stimuli. Using a process theory derived from the free energy principle, active inference, we investigate with an agent-based model the meaning of the dark room problem and discuss some of its implications for natural and artificial systems. In this set up, we propose that the presence of this paradox is primarily due to the long-standing belief that agents should encode accurate world models, typical of traditional (computational) theories of cognition.


2019 ◽  
Author(s):  
Dimitris Bolis ◽  
Leonhard Schilbach

Thinking Through Other Minds (TTOM) creatively situates the free energy principle within real-life cultural processes, thereby enriching both sociocultural theories and Bayesian accounts of cognition. Here, shifting the attention from thinking to becoming, we suggest complementing such an account by focusing on the empirical, computational and conceptual investigation of the multiscale dynamics of social interaction.


2021 ◽  
Author(s):  
Elliot Murphy ◽  
Emma Holmes ◽  
Karl Friston

Natural language syntax yields an unbounded array of hierarchically structured expressions. We claim that these are used in the service of active inference in accord with the free-energy principle (FEP). While conceptual advances alongside modelling and simulation work have attempted to connect speech segmentation and linguistic communication with the FEP, we extend this program to the underlying computations responsible for generating elementary syntactic objects. We argue that recently proposed principles of economy in language design—such as “minimal search” and “least effort” criteria from theoretical syntax—adhere to the FEP. This permits a greater degree of explanatory power to the FEP—with respect to higher language functions—and presents linguists with a grounding in first principles of notions pertaining to computability. More generally, we explore the possibility of migrating certain topics in linguistics over to the domain of fields that investigate the FEP, such as complex polysemy. We aim to align concerns of linguists with the normative model for organic self-organisation associated with the FEP, marshalling evidence from theoretical linguistics and psycholinguistics to ground core principles of efficient syntactic computation within active inference.


2020 ◽  
Author(s):  
Adam Safron

Integrated World Modeling Theory (IWMT) is a synthetic model that attempts to unify theories of consciousness within the Free Energy Principle and Active Inference framework, with particular emphasis on Integrated Information Theory (IIT) and Global Neuronal Workspace Theory (GNWT). IWMT further suggests predictive processing in sensory hierarchies may be well-modeled as (folded, sparse, partially disentangled) variational autoencoders, with beliefs discretely-updated via the formation of synchronous complexes—as self-organizing harmonic modes (SOHMs)—potentially entailing maximal a posteriori (MAP) estimation via turbo coding. In this account, alpha-synchronized SOHMs across posterior cortices may constitute the kinds of maximal complexes described by IIT, as well as samples (or MAP estimates) from multimodal shared latent space, organized according to egocentric reference frames, entailing phenomenal consciousness as mid-level perceptual inference. When these posterior SOHMs couple with frontal complexes, this may enable various forms of conscious access as a kind of mental act(ive inference), affording higher order cognition/control, including the kinds of attentional/intentional processing and reportability described by GNWT. Across this autoencoding heterarchy, intermediate-level beliefs may be organized into spatiotemporal trajectories by the entorhinal/hippocampal system, so affording episodic memory, counterfactual imaginings, and planning.


Author(s):  
El Hassan Bezzazi

The free energy principle and its corollary, active inference, were introduced by Karl Friston as an explanation embodied perception and action in neuroscience, and since, it has been used to address many other issues in different fields mainly related to cognitive science like learning, optimal decision, or interpersonal inference. Negotiation is a process where each negotiator has conflicting motivation is aiming to maximize his utility and where agreement is reached when the opposing interests are balanced. The purpose of this chapter is to illustrate how the free energy principle might be used through active inference in modeling a negotiation process based on an example of real life. The work is an attempt to bring together a dynamic logic framework with appropriate operators to consider motivation among agents on one hand and the active inference framework on the other hand.


Entropy ◽  
2020 ◽  
Vol 22 (8) ◽  
pp. 889 ◽  
Author(s):  
Maxwell J. D. Ramstead ◽  
Karl J. Friston ◽  
Inês Hipólito

The aim of this paper is twofold: (1) to assess whether the construct of neural representations plays an explanatory role under the variational free-energy principle and its corollary process theory, active inference; and (2) if so, to assess which philosophical stance—in relation to the ontological and epistemological status of representations—is most appropriate. We focus on non-realist (deflationary and fictionalist-instrumentalist) approaches. We consider a deflationary account of mental representation, according to which the explanatorily relevant contents of neural representations are mathematical, rather than cognitive, and a fictionalist or instrumentalist account, according to which representations are scientifically useful fictions that serve explanatory (and other) aims. After reviewing the free-energy principle and active inference, we argue that the model of adaptive phenotypes under the free-energy principle can be used to furnish a formal semantics, enabling us to assign semantic content to specific phenotypic states (the internal states of a Markovian system that exists far from equilibrium). We propose a modified fictionalist account—an organism-centered fictionalism or instrumentalism. We argue that, under the free-energy principle, pursuing even a deflationary account of the content of neural representations licenses the appeal to the kind of semantic content involved in the ‘aboutness’ or intentionality of cognitive systems; our position is thus coherent with, but rests on distinct assumptions from, the realist position. We argue that the free-energy principle thereby explains the aboutness or intentionality in living systems and hence their capacity to parse their sensory stream using an ontology or set of semantic factors.


2020 ◽  
Vol 43 ◽  
Author(s):  
Dimitris Bolis ◽  
Leonhard Schilbach

Abstract Thinking through other minds creatively situates the free-energy principle within real-life cultural processes, thereby enriching both sociocultural theories and Bayesian accounts of cognition. Here, shifting the attention from thinking-through to becoming-with, we suggest complementing such an account by focusing on the empirical, computational, and conceptual investigation of the multiscale dynamics of social interaction.


2021 ◽  
Author(s):  
Adam Safron

Is free will possible in a world governed by physical laws? How can mental states function as causes? What insights can be gained from studying integrative models of brains and minds? Here I briefly describe how the Free Energy Principle and Active Inference framework may help to illuminate the nature of volition, with particular focus on novel explanations for Libet phenomena, wherein consciousness may enter causal streams leading up to readiness potentials and subsequent actions.


Sign in / Sign up

Export Citation Format

Share Document