scholarly journals Situating Space: Using a Discipline-Focused Lens to Examine Spatial Thinking Skills

2020 ◽  
Author(s):  
Kinnari Rashesh Atit;Atit ◽  
David Uttal ◽  
Mike Stieff

Spatial skills are an important component of success in STEM fields. A majority of what we know about spatial skills today is a result of over 100 years of research focused on understanding and identifying the kinds of skills that make up this skill set. Over the last two decades, the field has recognized that unlike the spatial skills measured by psychometric tests developed by psychology researchers, the spatial problems faced by STEM experts vary widely and are multifaceted. Thus, many psychological researchers have embraced an interdisciplinary approach to studying spatial thinking with the aim of understanding the nature of this skill set as it occurs within STEM disciplines. In a parallel effort, discipline-based education researchers specializing in STEM domains have focused much of their research on understanding how to bolster students’ skills in completing domain-specific spatial tasks. In this paper, we discuss four lessons learned from these two programs of research to enhance the field’s understanding of spatial thinking in STEM domains. We demonstrate each contribution by aligning findings from research on three distinct STEM disciplines, structural geology, surgery, and organic chemistry. Lastly, we discuss the potential implications of these contributions to STEM education.

2015 ◽  
pp. 997-1019
Author(s):  
Reginald A. Blake ◽  
Janet Liou-Mark

The Science, Technology, Engineering, and Mathematics (STEM) disciplines have traditionally been woefully unsuccessful in attracting, retaining, and graduating acceptable numbers of Underrepresented Minorities (URMs). A new paradigm of STEM practices is needed to address this vexing problem. This chapter highlights a novel interdisciplinary approach to STEM education. Instead of being siloed and mired in their respective STEM disciplines, students integrate real world, inquiry-based learning that is underpinned by a strong foundation in mathematics and a myriad of other pillars of STEM activities. These activities include Peer-Assisted Learning Workshops, Mentoring Programs, Undergraduate Research Experiences, STEM Exposure Trips, Conference Participation, and Peer Leadership. This strategy enhances STEM education among URMs by purposefully connecting and integrating knowledge and skills from across the STEM disciplines to solve real-world problems, by synthesizing and transferring knowledge across disciplinary boundaries, and by building critical thinking skills in a manner that is relevant to their experiences and yet transformative.


Author(s):  
Reginald A. Blake ◽  
Janet Liou-Mark

The Science, Technology, Engineering, and Mathematics (STEM) disciplines have traditionally been woefully unsuccessful in attracting, retaining, and graduating acceptable numbers of Underrepresented Minorities (URMs). A new paradigm of STEM practices is needed to address this vexing problem. This chapter highlights a novel interdisciplinary approach to STEM education. Instead of being siloed and mired in their respective STEM disciplines, students integrate real world, inquiry-based learning that is underpinned by a strong foundation in mathematics and a myriad of other pillars of STEM activities. These activities include Peer-Assisted Learning Workshops, Mentoring Programs, Undergraduate Research Experiences, STEM Exposure Trips, Conference Participation, and Peer Leadership. This strategy enhances STEM education among URMs by purposefully connecting and integrating knowledge and skills from across the STEM disciplines to solve real-world problems, by synthesizing and transferring knowledge across disciplinary boundaries, and by building critical thinking skills in a manner that is relevant to their experiences and yet transformative.


Author(s):  
Vikas Kumar ◽  
Deepika Sharma

The under representation of students in STEM disciplines creates big worries for the coming demands of STEM occupations. This requires new strategies to make curriculum interesting to enhance student's engagement in learning. Technology integration in curriculum makes more interesting and engaging, where students can learn with flexibility in time and place. This methodology creates and deepens interest in students towards learning with creativity and innovation. STEM students can work on authentic and real solutions within a technology-mediated learning environment, while inculcating higher order thinking skills. Technology-mediated environments support new ideas, real time collaboration and promotes peer learning. However, affordance as an adoption factor of technology in academics can be addressed by cloud computing technology. STEM education on cloud computing technology will gain access to its content rich features based on flexibility, accessibility, scalability, affordability, and reliability and enhanced agility. The cloud computing based STEM education infrastructure will inculcate development and experimentation skills in students. The present work (a) reviews scholarly work in cloud computing technology for simulations and prototypes for different STEM subjects, (b) outlines the benefits of using cloud computing technology for students pursuing STEM careers, and (c) presents the case studies of the successful implementation of cloud computing in STEM disciplines.


Author(s):  
Vikas Kumar ◽  
Deepika Sharma

The under representation of students in STEM disciplines creates big worries for the coming demands of STEM occupations. This requires new strategies to make curriculum interesting to enhance student's engagement in learning. Technology integration in curriculum makes more interesting and engaging, where students can learn with flexibility in time and place. This methodology creates and deepens interest in students towards learning with creativity and innovation. STEM students can work on authentic and real solutions within a technology-mediated learning environment, while inculcating higher order thinking skills. Technology-mediated environments support new ideas, real time collaboration and promotes peer learning. However, affordance as an adoption factor of technology in academics can be addressed by cloud computing technology. STEM education on cloud computing technology will gain access to its content rich features based on flexibility, accessibility, scalability, affordability, and reliability and enhanced agility. The cloud computing based STEM education infrastructure will inculcate development and experimentation skills in students. The present work (a) reviews scholarly work in cloud computing technology for simulations and prototypes for different STEM subjects, (b) outlines the benefits of using cloud computing technology for students pursuing STEM careers, and (c) presents the case studies of the successful implementation of cloud computing in STEM disciplines.


Author(s):  
Emily Grossnickle Peterson ◽  
Adam B. Weinberger ◽  
David H. Uttal ◽  
Bob Kolvoord ◽  
Adam E. Green

Abstract Background Prior research has revealed positive effects of spatial activity participation (e.g., playing with blocks, sports) on current and future spatial skills. However, research has not examined the degree to which spatial activity participation remains stable over time, and little is known about how participating in spatial activities at multiple points in development impacts spatial thinking. In this study, adolescents completed measures of spatial thinking and questionnaires assessing their current and previous participation in spatial activities. Results Participation in childhood spatial activities predicted adolescent spatial activity participation, and the relation was stronger for females than for males. Adolescents’ current participation in spatial activities predicted spatial thinking skills, whereas participation in childhood spatial activities predicted adolescents’ spatial habits of mind, even when accounting for factors such as gender and academic performance. No cumulative benefit was incurred due to participating in spatial activities in both childhood and adolescence, and a lack of spatial activities in childhood was not made up for by later spatial activity participation. Conclusions These findings reveal a consistently positive relationship in spatial activity participation between childhood and adolescence. Results highlight the importance of participating in spatial activities during childhood, and underscore the differential impact that participation in spatial activities during childhood versus adolescence has on different facets of adolescents’ spatial thinking. Implications for the timing of interventions is discussed.


2009 ◽  
Vol 25 (1) ◽  
pp. 1-7 ◽  
Author(s):  
Jörg-Tobias Kuhn ◽  
Heinz Holling

The present study explores the factorial structure and the degree of measurement invariance of 12 divergent thinking tests. In a large sample of German students (N = 1328), a three-factor model representing verbal, figural, and numerical divergent thinking was supported. Multigroup confirmatory factor analyses revealed that partial strong measurement invariance was tenable across gender and age groups as well as school forms. Latent mean comparisons resulted in significantly higher divergent thinking skills for females and students in schools with higher mean IQ. Older students exhibited higher latent means on the verbal and figural factor, but not on the numerical factor. These results suggest that a domain-specific model of divergent thinking may be assumed, although further research is needed to elucidate the sources that negatively affect measurement invariance.


Semantic Web ◽  
2020 ◽  
pp. 1-45
Author(s):  
Valentina Anita Carriero ◽  
Aldo Gangemi ◽  
Maria Letizia Mancinelli ◽  
Andrea Giovanni Nuzzolese ◽  
Valentina Presutti ◽  
...  

Ontology Design Patterns (ODPs) have become an established and recognised practice for guaranteeing good quality ontology engineering. There are several ODP repositories where ODPs are shared as well as ontology design methodologies recommending their reuse. Performing rigorous testing is recommended as well for supporting ontology maintenance and validating the resulting resource against its motivating requirements. Nevertheless, it is less than straightforward to find guidelines on how to apply such methodologies for developing domain-specific knowledge graphs. ArCo is the knowledge graph of Italian Cultural Heritage and has been developed by using eXtreme Design (XD), an ODP- and test-driven methodology. During its development, XD has been adapted to the need of the CH domain e.g. gathering requirements from an open, diverse community of consumers, a new ODP has been defined and many have been specialised to address specific CH requirements. This paper presents ArCo and describes how to apply XD to the development and validation of a CH knowledge graph, also detailing the (intellectual) process implemented for matching the encountered modelling problems to ODPs. Relevant contributions also include a novel web tool for supporting unit-testing of knowledge graphs, a rigorous evaluation of ArCo, and a discussion of methodological lessons learned during ArCo’s development.


Sign in / Sign up

Export Citation Format

Share Document