Enhancing Diversity in STEM Interdisciplinary Learning

2015 ◽  
pp. 997-1019
Author(s):  
Reginald A. Blake ◽  
Janet Liou-Mark

The Science, Technology, Engineering, and Mathematics (STEM) disciplines have traditionally been woefully unsuccessful in attracting, retaining, and graduating acceptable numbers of Underrepresented Minorities (URMs). A new paradigm of STEM practices is needed to address this vexing problem. This chapter highlights a novel interdisciplinary approach to STEM education. Instead of being siloed and mired in their respective STEM disciplines, students integrate real world, inquiry-based learning that is underpinned by a strong foundation in mathematics and a myriad of other pillars of STEM activities. These activities include Peer-Assisted Learning Workshops, Mentoring Programs, Undergraduate Research Experiences, STEM Exposure Trips, Conference Participation, and Peer Leadership. This strategy enhances STEM education among URMs by purposefully connecting and integrating knowledge and skills from across the STEM disciplines to solve real-world problems, by synthesizing and transferring knowledge across disciplinary boundaries, and by building critical thinking skills in a manner that is relevant to their experiences and yet transformative.

Author(s):  
Reginald A. Blake ◽  
Janet Liou-Mark

The Science, Technology, Engineering, and Mathematics (STEM) disciplines have traditionally been woefully unsuccessful in attracting, retaining, and graduating acceptable numbers of Underrepresented Minorities (URMs). A new paradigm of STEM practices is needed to address this vexing problem. This chapter highlights a novel interdisciplinary approach to STEM education. Instead of being siloed and mired in their respective STEM disciplines, students integrate real world, inquiry-based learning that is underpinned by a strong foundation in mathematics and a myriad of other pillars of STEM activities. These activities include Peer-Assisted Learning Workshops, Mentoring Programs, Undergraduate Research Experiences, STEM Exposure Trips, Conference Participation, and Peer Leadership. This strategy enhances STEM education among URMs by purposefully connecting and integrating knowledge and skills from across the STEM disciplines to solve real-world problems, by synthesizing and transferring knowledge across disciplinary boundaries, and by building critical thinking skills in a manner that is relevant to their experiences and yet transformative.


2010 ◽  
Vol 9 (2) ◽  
pp. 108-118 ◽  
Author(s):  
Nicholas Balster ◽  
Christine Pfund ◽  
Raelyn Rediske ◽  
Janet Branchaw

Undergraduate research experiences have been shown to enhance the educational experience and retention of college students, especially those from underrepresented populations. However, many challenges still exist relative to building community among students navigating large institutions. We developed a novel course called Entering Research that creates a learning community to support beginning undergraduate researchers and is designed to parallel the Entering Mentoring course for graduate students, postdocs, and faculty serving as mentors of undergraduate researchers. The course serves as a model that can be easily adapted for use across the science, technology, engineering, and mathematics (STEM) disciplines using a readily available facilitator's manual. Course evaluations and rigorous assessment show that the Entering Research course helps students in many ways, including finding a mentor, understanding their place in a research community, and connecting their research to their course work in the biological and physical sciences. Students in the course reported statistically significant gains in their skills, knowledge, and confidence as researchers compared with a control group of students, who also were engaged in undergraduate research but not enrolled in this course. In addition, the faculty and staff members who served as facilitators of the Entering Research course described their experience as rewarding and one they would recommend to their colleagues.


2020 ◽  
Vol 10 (6) ◽  
pp. 150
Author(s):  
Nate Bickford ◽  
Elizabeth Peterson ◽  
Philip Jensen ◽  
Dave Thomas

In Science, Technology, Engineering, and Mathematics (STEM), undergraduate research experiences provide students with invaluable opportunities to improve scientific skills. However, less is known about its impact on higher-order thinking skills. Therefore, we sought to determine if engagement in undergraduate research would improve academic performance in students engaged in research compared to those that were not. To accomplish this, biology majors were enrolled in courses that taught research methodology and techniques. Results indicated that students who were selected for the research program outperformed their peers in their other classes during the research program, based on t-test statistics. However, these students had also outperformed their peers during the previous fall semester, prior to receiving additional instruction. Furthermore, students who merely applied for inclusion in the program had significantly higher grades than students who did not apply. In addition, writing samples from research and non-research students were significantly different. Taken together, these data suggest that while undergraduate research may indeed enhance a student’s academic performance and interest in science, a student’s personal interest and drive for research may themselves indicate superior academic performance. Further, science departments aiming to offer research early in their curricula may benefit from such a self-selection strategy, especially in cases where there are limited resources available for undergraduate research.


2020 ◽  
Author(s):  
Kinnari Rashesh Atit;Atit ◽  
David Uttal ◽  
Mike Stieff

Spatial skills are an important component of success in STEM fields. A majority of what we know about spatial skills today is a result of over 100 years of research focused on understanding and identifying the kinds of skills that make up this skill set. Over the last two decades, the field has recognized that unlike the spatial skills measured by psychometric tests developed by psychology researchers, the spatial problems faced by STEM experts vary widely and are multifaceted. Thus, many psychological researchers have embraced an interdisciplinary approach to studying spatial thinking with the aim of understanding the nature of this skill set as it occurs within STEM disciplines. In a parallel effort, discipline-based education researchers specializing in STEM domains have focused much of their research on understanding how to bolster students’ skills in completing domain-specific spatial tasks. In this paper, we discuss four lessons learned from these two programs of research to enhance the field’s understanding of spatial thinking in STEM domains. We demonstrate each contribution by aligning findings from research on three distinct STEM disciplines, structural geology, surgery, and organic chemistry. Lastly, we discuss the potential implications of these contributions to STEM education.


2016 ◽  
Vol 37 (2) ◽  
pp. 84
Author(s):  
Jack TH Wang

In the increasingly competitive global knowledge marketplace, Australian tertiary educators are looking to enrich their program offerings by providing authentic learning experiences for their students. In the biological sciences, this authenticity is best represented by hands-on inquiry and laboratory experimentation, often within the context of research internships. Authentic Large-Scale Undergraduate Research Experiences (ALUREs) aim to broaden the scope of these learning experiences by embedding research into coursework activities accessible by all students within the program. These experiences can promote learning gains in laboratory, analytical, and critical thinking skills, providing students with a transferable skillset applicable to many career paths across the science sector.


2021 ◽  
Vol 14 (2) ◽  
pp. 187-196
Author(s):  
Francisco Javier Triveno Vargas ◽  
Hugo Siles Alvarado

STEM education is a strategy based on four disciplines (science, technology, engineering and mathematics), integrated in an innovative interdisciplinary approach. Although, the concept of STEM education is more relevant today, the discussion of a teaching model with special attention in the four subjects aforementioned began in the early 2000s. Taking into account this context, the strategy presented in this paper has been disseminated in Bolivia’s main universities for the last five years. A country that has not yet managed to associate basic disciplines such as calculus, matrix algebra, and/or differential equations to solve problems of an applicative nature, that is, to establish the link between theory and practice. To establish the connection, it is necessary to deduce differential equations associated with practical problems; solve these equations with numerical methods, appeal to the simulation concept to later introduce programming languages like Python/VPython to build virtual laboratories. The classical problem addressed for this purpose is the satellite of two degrees of freedom.


Author(s):  
Vikas Kumar ◽  
Deepika Sharma

The under representation of students in STEM disciplines creates big worries for the coming demands of STEM occupations. This requires new strategies to make curriculum interesting to enhance student's engagement in learning. Technology integration in curriculum makes more interesting and engaging, where students can learn with flexibility in time and place. This methodology creates and deepens interest in students towards learning with creativity and innovation. STEM students can work on authentic and real solutions within a technology-mediated learning environment, while inculcating higher order thinking skills. Technology-mediated environments support new ideas, real time collaboration and promotes peer learning. However, affordance as an adoption factor of technology in academics can be addressed by cloud computing technology. STEM education on cloud computing technology will gain access to its content rich features based on flexibility, accessibility, scalability, affordability, and reliability and enhanced agility. The cloud computing based STEM education infrastructure will inculcate development and experimentation skills in students. The present work (a) reviews scholarly work in cloud computing technology for simulations and prototypes for different STEM subjects, (b) outlines the benefits of using cloud computing technology for students pursuing STEM careers, and (c) presents the case studies of the successful implementation of cloud computing in STEM disciplines.


Author(s):  
Amanda L. Strawhacker ◽  
Amanda A. Sullivan

In the past two decades, STEM education has been slowly replaced by “STEAM,” which refers to learning that integrates science, technology, engineering, arts, and mathematics. The added “Arts” portion of this pedagogical approach, although an important step towards integrated 21st century learning, has long confused policymakers, with definitions ranging from visual arts to humanities to art education and more. The authors take the position that Arts can be broadly interpreted to mean any approach that brings interpretive and expressive perspectives to STEM activities. In this chapter, they present illustrative cases inspired by work in real learning settings that showcase how STEAM concepts and computational thinking skills can support children's engagement in cultural, performing, and fine arts, including painting, sculpture, architecture, poetry, music, dance, and drama.


Author(s):  
Ryan G. Zonnefeld ◽  
Valorie L. Zonnefeld

Innovative teacher preparation programs for STEM education are essential for meeting the goal of ensuring that secondary school students receive instruction from a certified teacher. This exploratory workshop examines the role that interdisciplinary STEM and mathematics programs can have to increase the number of certified teachers prepared to teach STEM classes from an interdisciplinary approach.


Author(s):  
Vikas Kumar ◽  
Deepika Sharma

The under representation of students in STEM disciplines creates big worries for the coming demands of STEM occupations. This requires new strategies to make curriculum interesting to enhance student's engagement in learning. Technology integration in curriculum makes more interesting and engaging, where students can learn with flexibility in time and place. This methodology creates and deepens interest in students towards learning with creativity and innovation. STEM students can work on authentic and real solutions within a technology-mediated learning environment, while inculcating higher order thinking skills. Technology-mediated environments support new ideas, real time collaboration and promotes peer learning. However, affordance as an adoption factor of technology in academics can be addressed by cloud computing technology. STEM education on cloud computing technology will gain access to its content rich features based on flexibility, accessibility, scalability, affordability, and reliability and enhanced agility. The cloud computing based STEM education infrastructure will inculcate development and experimentation skills in students. The present work (a) reviews scholarly work in cloud computing technology for simulations and prototypes for different STEM subjects, (b) outlines the benefits of using cloud computing technology for students pursuing STEM careers, and (c) presents the case studies of the successful implementation of cloud computing in STEM disciplines.


Sign in / Sign up

Export Citation Format

Share Document