scholarly journals Modelling and Simulating Action Dynamics in Underconstrained Tasks in Virtual Reality

Author(s):  
Patric Cristofer Nordbeck ◽  
Maurice Lamb ◽  
Paula L. Silva

Consistently achieving a desired level of task performance across contextual conditions requires behavioral adaptability. In this paper we showcase a VR application based on a previous 'in-real-life' task that produces data analyzable for flexibility & stability of body movements and correlated performance.

2020 ◽  
Vol 9 (5) ◽  
pp. 1260 ◽  
Author(s):  
Mariano Alcañiz Raya ◽  
Javier Marín-Morales ◽  
Maria Eleonora Minissi ◽  
Gonzalo Teruel Garcia ◽  
Luis Abad ◽  
...  

Autism spectrum disorder (ASD) is mostly diagnosed according to behavioral symptoms in sensory, social, and motor domains. Improper motor functioning, during diagnosis, involves the qualitative evaluation of stereotyped and repetitive behaviors, while quantitative methods that classify body movements’ frequencies of children with ASD are less addressed. Recent advances in neuroscience, technology, and data analysis techniques are improving the quantitative and ecological validity methods to measure specific functioning in ASD children. On one side, cutting-edge technologies, such as cameras, sensors, and virtual reality can accurately detect and classify behavioral biomarkers, as body movements in real-life simulations. On the other, machine-learning techniques are showing the potential for identifying and classifying patients’ subgroups. Starting from these premises, three real-simulated imitation tasks have been implemented in a virtual reality system whose aim is to investigate if machine-learning methods on movement features and frequency could be useful in discriminating ASD children from children with typical neurodevelopment. In this experiment, 24 children with ASD and 25 children with typical neurodevelopment participated in a multimodal virtual reality experience, and changes in their body movements were tracked by a depth sensor camera during the presentation of visual, auditive, and olfactive stimuli. The main results showed that ASD children presented larger body movements than TD children, and that head, trunk, and feet represent the maximum classification with an accuracy of 82.98%. Regarding stimuli, visual condition showed the highest accuracy (89.36%), followed by the visual-auditive stimuli (74.47%), and visual-auditive-olfactory stimuli (70.21%). Finally, the head showed the most consistent performance along with the stimuli, from 80.85% in visual to 89.36% in visual-auditive-olfactory condition. The findings showed the feasibility of applying machine learning and virtual reality to identify body movements’ biomarkers that could contribute to improving ASD diagnosis.


Author(s):  
Jacob M. Read ◽  
Jason J. Saleem

Training can be expensive, dangerous, or impractical for certain situations. Virtual reality (VR) technology could be utilized to reduce the negative aspects of real-life training and the consequences incurred from inadequate training. However, for VR to be an effective training method, it must reflect reality to a certain extent. We measured task performance and situation awareness for parking situations with 15 participants in a real-world environment, and in a virtual environment using a VR headset and a flat screen computer monitor separately. Results revealed no significant difference in driver situation awareness between the reality, VR, and flat screen conditions. Performance in terms of task time was significantly less with the reality condition compared to the others. Therefore, the VR device was not equivalent to the real-world environment for training purposes. We discuss ways in which improvements to the VR training condition may increase the effectiveness of VR-based training.


Author(s):  
Yu-Sheng Yang ◽  
Alicia M. Koontz ◽  
Yu-Hsuan Hsiao ◽  
Cheng-Tang Pan ◽  
Jyh-Jong Chang

Maneuvering a wheelchair is an important necessity for the everyday life and social activities of people with a range of physical disabilities. However, in real life, wheelchair users face several common challenges: articulate steering, spatial relationships, and negotiating obstacles. Therefore, our research group has developed a head-mounted display (HMD)-based intuitive virtual reality (VR) stimulator for wheelchair propulsion. The aim of this study was to investigate the feasibility and efficacy of this VR stimulator for wheelchair propulsion performance. Twenty manual wheelchair users (16 men and 4 women) with spinal cord injuries ranging from T8 to L2 participated in this study. The differences in wheelchair propulsion kinematics between immersive and non-immersive VR environments were assessed using a 3D motion analysis system. Subjective data of the HMD-based intuitive VR stimulator were collected with a Presence Questionnaire and individual semi-structured interview at the end of the trial. Results indicated that propulsion performance was very similar in terms of start angle (p = 0.34), end angle (p = 0.46), stroke angle (p = 0.76), and shoulder movement (p = 0.66) between immersive and non-immersive VR environments. In the VR episode featuring an uphill journey, an increase in propulsion speed (p < 0.01) and cadence (p < 0.01) were found, as well as a greater trunk forward inclination (p = 0.01). Qualitative interviews showed that this VR simulator made an attractive, novel impression and therefore demonstrated the potential as a tool for stimulating training motivation. This HMD-based intuitive VR stimulator can be an effective resource to enhance wheelchair maneuverability experiences.


2021 ◽  
Vol 5 (CHI PLAY) ◽  
pp. 1-24
Author(s):  
Andrey Krekhov ◽  
Katharina Emmerich ◽  
Ronja Rotthaler ◽  
Jens Krueger

Escape rooms exist in various forms, including real-life facilities, board games, and digital implementations. The underlying idea is always the same: players have to solve many diverse puzzles to (virtually) escape from a locked room. Within the last decade, we witnessed a rapidly increasing popularity of such games, which also amplified the amount of related research. However, the respective academic landscape is mostly fragmented in its current state, lacking a common model and vocabulary that would withstand these games' variety. This manuscript aims to establish such a foundation for the analysis and construction of escape rooms. In a first step, we derive a high-level design framework from prior literature. Then, as our main contribution, we establish an atomic puzzle taxonomy that closes the gap between the analog and digital domains. The taxonomy is developed in multiple steps: we compose a basic structure based on previous literature and systematically refine it by analyzing 39 analog and digital escape room games, including recent virtual reality representatives. The final taxonomy consists of mental, physical, and emotional challenges, thereby providing a robust and approachable basis for future works across all application domains that deal with escape rooms or puzzles in general.


2018 ◽  
Vol 18 (2) ◽  
pp. 30-57
Author(s):  
Shamima Yasmin

This paper conducts an extensive survey on existing Virtual Reality (VR)-based rehabilitation approaches in the context of different types of impairments: mobility, cognitive, and visual. Some VR-based assistive technologies involve repetitions of body movements, some require persistent mental exercise, while some work as sensory substitution systems. A multi-modal VR-based environment can incorporate a number of senses, (i.e., visual, auditory, or haptic) into the system and can be an immense source of motivation and engagement in comparison with traditional rehabilitation therapy. This survey categorizes virtual environments on the basis of different available modalities. Each category is again subcategorized by the types of impairments while introducing available devices and interfaces. Before concluding the survey, the paper also briefly focuses on some issues with existing VR-based approaches that need to be optimized to exploit the utmost benefit of virtual environment-based rehabilitation systems .


10.2196/17807 ◽  
2020 ◽  
Vol 8 (2) ◽  
pp. e17807 ◽  
Author(s):  
Philip Lindner ◽  
Alexander Rozental ◽  
Alice Jurell ◽  
Lena Reuterskiöld ◽  
Gerhard Andersson ◽  
...  

Background Virtual reality exposure therapy is an efficacious treatment of anxiety disorders, and recent research suggests that such treatments can be automated, relying on gamification elements instead of a real-life therapist directing treatment. Such automated, gamified treatments could be disseminated without restrictions, helping to close the treatment gap for anxiety disorders. Despite initial findings suggesting high efficacy, very is little is known about how users experience this type of intervention. Objective The aim of this study was to examine user experiences of automated, gamified virtual reality exposure therapy using in-depth qualitative methods. Methods Seven participants were recruited from a parallel clinical trial comparing automated, gamified virtual reality exposure therapy for spider phobia against an in vivo exposure equivalent. Participants received the same virtual reality treatment as in the trial and completed a semistructured interview afterward. The transcribed material was analyzed using thematic analysis. Results Many of the uncovered themes pertained directly or indirectly to a sense of presence in the virtual environment, both positive and negative. The automated format was perceived as natural and the gamification elements appear to have been successful in framing the experience not as psychotherapy devoid of a therapist but rather as a serious game with a psychotherapeutic goal. Conclusions Automated, gamified virtual reality exposure therapy appears to be an appealing treatment modality and to work by the intended mechanisms. Findings from the current study may guide the next generation of interventions and inform dissemination efforts and future qualitative research into user experiences.


Author(s):  
Irina Kulikovskaya ◽  
Liudmila Kudinova ◽  
Maria Guryeva ◽  
AF AF
Keyword(s):  

Sign in / Sign up

Export Citation Format

Share Document