scholarly journals What Quantile Regression Does and Doesn't Do

2018 ◽  
Author(s):  
Sebastian Ernst Wenz

Petscher and Logan (2014)’s description of quantile regression might mislead readers to believe it would estimate the relation between an outcome, y, and one or more predictors, x, at different quantiles of the unconditional distribution of y. However, quantile regression models the conditional quantile function of y given x just as linear regression models the conditional mean function. This article’s contribution is twofold: First, it discusses potential consequences of methodological misconceptions and formulations of Petscher and Logan (2014)’s presentation by contrasting features of quantile regression and linear regression. Secondly, it reinforces the importance of correct understanding of quantile regression in empirical research by illustrating similarities and differences of various quantile regression estimators and linear regression using simulated data.

Author(s):  
Matteo Bottai ◽  
Nicola Orsini

In this article, we introduce the qmodel command, which fits parametric models for the conditional quantile function of an outcome variable given covariates. Ordinary quantile regression, implemented in the qreg command, is a popular, simple type of parametric quantile model. It is widely used but known to yield erratic estimates that often lead to uncertain inferences. Parametric quantile models overcome these limitations and extend modeling of conditional quantile functions beyond ordinary quantile regression. These models are flexible and efficient. qmodel can estimate virtually any possible linear or nonlinear parametric model because it allows the user to specify any combination of qmodel-specific built-in functions, standard mathematical and statistical functions, and substitutable expressions. We illustrate the potential of parametric quantile models and the use of the qmodel command and its postestimation commands through realand simulated-data examples that commonly arise in epidemiological and pharmacological research. In addition, this article may give insight into the close connection that exists between quantile functions and the true mathematical laws that generate data.


2020 ◽  
Author(s):  
Jia-Young Michael Fu ◽  
Joel L Horowitz ◽  
Matthias Parey

Summary This paper presents a test for exogeneity of explanatory variables in a nonparametric instrumental variables (IV) model whose structural function is identified through a conditional quantile restriction. Quantile regression models are increasingly important in applied econometrics. As with mean-regression models, an erroneous assumption that the explanatory variables in a quantile regression model are exogenous can lead to highly misleading results. In addition, a test of exogeneity based on an incorrectly specified parametric model can produce misleading results. This paper presents a test of exogeneity that does not assume that the structural function belongs to a known finite-dimensional parametric family and does not require estimation of this function. The latter property is important because nonparametric estimates of the structural function are unavoidably imprecise. The test presented here is consistent whenever the structural function differs from the conditional quantile function on a set of nonzero probability. The test has nontrivial power uniformly over a large class of structural functions that differ from the conditional quantile function by $O({n^{ - 1/2}})$. The results of Monte Carlo experiments and an empirical application illustrate the performance of the test.


2014 ◽  
Vol 2014 ◽  
pp. 1-7
Author(s):  
Xuedong Chen ◽  
Qianying Zeng ◽  
Qiankun Song

An extension of some standard likelihood and variable selection criteria based on procedures of linear regression models under the skew-normal distribution or the skew-tdistribution is developed. This novel class of models provides a useful generalization of symmetrical linear regression models, since the random term distributions cover both symmetric as well as asymmetric and heavy-tailed distributions. A generalized expectation-maximization algorithm is developed for computing thel1penalized estimator. Efficacy of the proposed methodology and algorithm is demonstrated by simulated data.


2018 ◽  
Vol 23 (1) ◽  
pp. 60-71
Author(s):  
Wigiyanti Masodah

Offering credit is the main activity of a Bank. There are some considerations when a bank offers credit, that includes Interest Rates, Inflation, and NPL. This study aims to find out the impact of Variable Interest Rates, Inflation variables and NPL variables on credit disbursed. The object in this study is state-owned banks. The method of analysis in this study uses multiple linear regression models. The results of the study have shown that Interest Rates and NPL gave some negative impacts on the given credit. Meanwhile, Inflation variable does not have a significant effect on credit given. Keywords: Interest Rate, Inflation, NPL, offered Credit.


Author(s):  
Nykolas Mayko Maia Barbosa ◽  
João Paulo Pordeus Gomes ◽  
César Lincoln Cavalcante Mattos ◽  
Diêgo Farias Oliveira

2003 ◽  
Vol 5 (3) ◽  
pp. 363 ◽  
Author(s):  
Slamet Sugiri

The main objective of this study is to examine a hypothesis that the predictive content of normal income disaggregated into operating income and nonoperating income outperforms that of aggregated normal income in predicting future cash flow. To test the hypothesis, linear regression models are developed. The model parameters are estimated based on fifty-five manufacturing firms listed in the Jakarta Stock Exchange (JSX) up to the end of 1997.This study finds that empirical evidence supports the hypothesis. This evidence supports arguments that, in reporting income from continuing operations, multiple-step approach is preferred to single-step one.


Sign in / Sign up

Export Citation Format

Share Document