scholarly journals Empirical Explanations of Carbon Mitigation during Periods of Economic Growth

2019 ◽  
Author(s):  
Ranran Wang ◽  
Valentina A. Assenova ◽  
Edgar Hertwich

Prior research on the empirical relationship between anthropogenic carbon dioxide (CO2) emissions and economic growth, as measured by increases in gross domestic product (GDP), indicate that a 1% growth in GDP can lead to anything between an increase in emissions by 2.5% to a decline by 0.3%. Studies have paid little attention to independent mechanisms that reduce emissions. Statistical properties of the data undermine the estimation techniques used in many studies. To address these shortcomings, we used novel methods and panel data integrating emissions, economic, and energy-system characteristics across 70 economies over 1970-2013 to derive a universal GDP-emissions relationship and identify key emissions-reduction mechanisms. We found that, robust to a variety of estimation procedures, every 1% increase in GDP was associated with a 1% increase in CO2 emissions when controlling for other mechanisms. Emissions reductions were mainly driven by four mechanisms: (i) energy system decarbonization, (ii) increased economic efficiency, (iii) electrification, and (iv) deindustrialization. A 1% increase in these factors was associated with 0.2-1.8% reductions in CO2 emissions per year; together, these factors contributed to 18 petagrams of emissions reduction globally over 1970-2013. Decarbonization contributed most to emissions reductions in high-income economies, while economic efficiency and electrification contributed most to reductions in low-income economies.

2021 ◽  
Vol 279 ◽  
pp. 111704
Author(s):  
Jijian Zhang ◽  
Ataul Karim Patwary ◽  
Huaping Sun ◽  
Muhammad Raza ◽  
Farhad Taghizadeh-Hesary ◽  
...  

2014 ◽  
Vol 53 (4II) ◽  
pp. 383-401 ◽  
Author(s):  
Muhammad Tariq Mahmood ◽  
Sadaf Shahab

It is now an established fact that the most important environmental problem of our era is global warming.1 The rising quantity of worldwide carbon dioxide (CO2) emissions seems to be escalating this problem. As the emissions generally result from consumption of fossil fuels, decreasing energy spending seems to be the direct way of handling the emissions problem. However, because of the possible negative impacts on economic growth, cutting the energy utilisation is likely to be the “less preferred road”. Moreover, if the Environmental Kuznets Curve (EKC) hypothesis applies to the emissions and income link, economic growth by itself may become a solution to the problem of environmental degradation [Rothman and de Bruyn (1998)]. Coondoo and Dinda (2002), however, argue that both developing and developed economies must sacrifice economic growth. Still, countries may opt for different policies to fight global environmental problems, mainly depending on the type of relationship between CO2 emissions, income, and energy consumption over the long run [Soytas and Sari (2006)]. Hence, the emissions-energy-income nexus needs to be studied carefully and in detail for every economy, but more so for the developing countries. In this paper, we investigate the relationship between energy consumption, CO2 emissions and the economy in Pakistan from a long run perspective, in a multivariate framework controlling for gross fixed capital, labour and exports by employing ARDL bounds testing approach.


2015 ◽  
Vol 7 (5) ◽  
pp. 6119-6148 ◽  
Author(s):  
Manuel Herrador ◽  
Alexandre Carvalho ◽  
Francisco Feito

2019 ◽  
Vol 1 (3) ◽  
pp. 174-180 ◽  
Author(s):  
Bandiyah Sri Aprillia ◽  
Desri Kristina Silalahi ◽  
Muhammad Agung Foury Rigoursyah

Electricity demand increases along with an increasing population. Renewable energy power plants are experiencing an increase in their use. This increase occurred because the world's electricity needs are rising every year, so the development of renewable energy power plants continues. Indonesia's state-owned power plants supply electricity more from non-renewable energy sources than renewable energy sources. Therefore, there is a need for renewable energy sources that can supply electricity in Indonesia. This research discusses an efficient renewable energy system for residential and the total installation costs for on-grid systems in Bandung, Indonesia. The research method used is collecting solar radiation data, equipment specifications and other data needed and then optimized. The simulation model uses HOMER software. HOMER is used to determine the best technically estimated cost, payback period, and NPC. Based on the optimization results, the system configuration can supply the electricity load 45.5% of daily load consumption with a total NPC cost is 75,300,000 million with a payback period of 7 years. In addition, the on-grid system produces 1400 kg of carbon dioxide (CO2) emissions per year from diesel generators, lower than the CO2 emissions from systems that only comprise diesel generators reaching 114 tons per year.    


Sign in / Sign up

Export Citation Format

Share Document