scholarly journals Copper-nickel sulfide mineral occurrence in dolerites of the eastern slope of the Аnabar shield

1975 ◽  
Vol 17 (3) ◽  
pp. 342-346 ◽  
Author(s):  
A.D. Genkin ◽  
T.L. Yevstigneyeva ◽  
L.N. Vyal'sov ◽  
I.P. Laputina ◽  
N.V. Groneva

1978 ◽  
Vol 20 (1) ◽  
pp. 96-100 ◽  
Author(s):  
A. D. Genkin ◽  
T. L. Yevstigneyeva ◽  
N. V. Troneva ◽  
L. N. Vyal'sov

2009 ◽  
Vol 98 (1-2) ◽  
pp. 66-72 ◽  
Author(s):  
M. Maley ◽  
W. van Bronswijk ◽  
H.R. Watling

2017 ◽  
Vol 83 (16) ◽  
Author(s):  
Daniel S. Jones ◽  
Kim A. Lapakko ◽  
Zachary J. Wenz ◽  
Michael C. Olson ◽  
Elizabeth W. Roepke ◽  
...  

ABSTRACT The Duluth Complex in northeastern Minnesota hosts economically significant deposits of copper, nickel, and platinum group elements (PGEs). The primary sulfide mineralogy of these deposits includes the minerals pyrrhotite, chalcopyrite, pentlandite, and cubanite, and weathering experiments show that most sulfide-bearing rock from the Duluth Complex generates moderately acidic leachate (pH 4 to 6). Microorganisms are important catalysts for metal sulfide oxidation and could influence the quality of water from mines in the Duluth Complex. Nevertheless, compared with that of extremely acidic environments, much less is known about the microbial ecology of moderately acidic sulfide-bearing mine waste, and so existing information may have little relevance to those microorganisms catalyzing oxidation reactions in the Duluth Complex. Here, we characterized the microbial communities in decade-long weathering experiments (kinetic tests) conducted on crushed rock and tailings from the Duluth Complex. Analyses of 16S rRNA genes and transcripts showed that differences among microbial communities correspond to pH, rock type, and experimental treatment. Moreover, microbial communities from the weathered Duluth Complex rock were dominated by taxa that are not typically associated with acidic mine waste. The most abundant operational taxonomic units (OTUs) were from the genera Meiothermus and Sulfuriferula, as well as from diverse clades of uncultivated Chloroflexi, Acidobacteria, and Betaproteobacteria. Specific taxa, including putative sulfur-oxidizing Sulfuriferula spp., appeared to be primarily associated with Duluth Complex rock, but not pyrite-bearing rocks subjected to the same experimental treatment. We discuss the implications of these results for the microbial ecology of moderately acidic mine waste with low sulfide content, as well as for kinetic testing of mine waste. IMPORTANCE Economic sulfide mineral deposits in the Duluth Complex may represent the largest undeveloped source of copper and nickel on Earth. Microorganisms are important catalysts for sulfide mineral oxidation, and research on extreme acidophiles has improved our ability to manage and remediate mine wastes. We found that the microbial assemblages associated with weathered rock from the Duluth Complex are dominated by organisms not widely associated with mine waste or mining-impacted environments, and we describe geochemical and experimental influences on community composition. This report will be a useful foundation for understanding the microbial biogeochemistry of moderately acidic mine waste from these and similar deposits.


2009 ◽  
Vol 19 (2) ◽  
pp. 438-445
Author(s):  
Lin-lin TONG ◽  
Mao-fa JIANG ◽  
Hong-ying YANG ◽  
Juan YU ◽  
You-jing FAN ◽  
...  

2011 ◽  
Vol 312-315 ◽  
pp. 719-724 ◽  
Author(s):  
Evgeny N. Selivanov ◽  
O.V. Nechvoglod ◽  
S.V. Mamyachenkov

It has been found that the dispersion of phases in copper-nickel sulfide-metal alloys influences their electrochemical properties. X-ray diffraction and optical and electron microscopy have been used to study structural characteristics of the samples prepared by crystallization of sulfide melts at different rates of 10÷103 K/s. High-rate cooling of a converter matte leads to the formation of nonequilibrium sulfide phases and a metallic component dissolved in these phases. The electrochemical oxidation of copper-nickel sulfide alloys has been studied by voltammetry with a linear potential sweep. The data point to a reduction of the limiting oxidation currents of the sulfide alloys prepared by high-rate cooling. The compositions of the intermediate phases and solid products of the electrochemical oxidation, which form the passivating layer, have been determined. The electrolysis of dispersed sulfide alloys allows performing the process at low densities of the current and, thus, the diffusion limitations have been removed.


2012 ◽  
Vol 30 (2) ◽  
Author(s):  
César Augusto Moreira ◽  
Syngra Machado Lopes ◽  
Camila Schweig ◽  
Adriano Da Rosa Seixas

The mineral exploration is a complex activity that should involve a combination of direct and indirect techniques of geological investigation. The growing demand for base metals in the national and international market provides the revaluation of mineral occurrences that can become deposits and mines. This paper presents the results of the electrical resistivity and induced polarization geophysical methods in azimuthal arrangement, applied in a mineral occurrence of disseminated copper sulfides, previously studied through trenches and core drilling, located in the Camaquã Sedimentary Basin, Rio Grande do Sul State, Brazil. The inversion models indicate the coincidence of high chargeability and low resistivity values. The  integration of geophysical data permitted the elaboration of 3D attributes visualization models for the mineralization enclosed in volcanic tuffs. The integrated geophysical and geological analysis indicates the potential of a new mineralized area.


Sign in / Sign up

Export Citation Format

Share Document