scholarly journals ANALISIS KOMPENSASI DISPERSI MENGGUNAKAN PENGUAT RAMAN PADA JARINGAN WDM (WAVELENGTH DIVISION MULTIPLEXING) DALAM KOMUNIKASI SERAT OPTIK

2018 ◽  
Vol 15 (2) ◽  
pp. 88
Author(s):  
Roby Ikhsan ◽  
Romi Fadli Syahputra ◽  
Saktioto Saktioto

The discovery of optical fiber cause widespread revolution of communication system. Optical fiber communication has excellency on data transmission speed, security, flexibility, and broadly bandwidth. The applying of WDM network can broaden the bandwidth so that the transmission performance becomes more splendid. Although some factors such as dispersion, attenuation, and scattering can hinder the performance of fiber optic on sending data. Moreover dispersion can wreck data and spread pulse as it travels alongs fiber so that causing interference. There is some methods  of dispersion compensation. In this paper, Fiber Raman Amplifier is used on WDM network to strengthen signal which is sent to detector. This research utilize simulation approachment  with various bandwidth and length fiber. The results show lowest BER value and highest Q-factor at bandwidth frequency of 30 GHz and fiber length of 20 km.

2014 ◽  
Vol 23 (01) ◽  
pp. 1450007 ◽  
Author(s):  
Khadijah Ismail ◽  
P. Susthitha Menon ◽  
Sahbudin Shaari ◽  
Abang Annuar Ehsan ◽  
Hesham Bakarman ◽  
...  

The incorporation of cascaded and hybrid-type optical amplifiers into the optical fiber link is advantageous for the purpose of achieving wide gain bandwidth of multi-wavelength coarse wavelength division multiplexing (CWDM) systems. Different amplifiers whose operating gain region differ from each other are connected in cascade, thus providing better gain performance as the overall gain is combined and flattened over a larger spectrum. In this paper, the effect of the crossover of the uniform gain of the semiconductor optical amplifier (SOA) and the nonuniform gain of erbium-doped fiber amplifier (EDFA) is analyzed using an in-line cascaded SOA-SOA and an in-line hybrid SOA-EDFA configuration in the amplification of an 8-channels CWDM system obtained from the simulation using Optisystem software. It was observed that the cascaded SOA-SOA produces higher gain of 25 dB and wider gain bandwidth of 60 nm compared to the hybrid SOA-EDFA configuration with maximum gain of only 24 dB and 40 nm bandwidth. In addition, better bit-error-rate (BER) performance which is within the typical values in optical fiber communication is also achieved from the cascaded SOA topology. Wider gain bandwidth obtained with the SOA-SOA configuration would permit the transmission of video application at 1551 nm in the proposed Ethernet CWDM system transmitted at 100 Mb/s data rates.


2020 ◽  
Vol 40 (14) ◽  
pp. 1406003
Author(s):  
黄媛 Huang Yuan ◽  
赵家钰 Zhao Jiayu ◽  
王金东 Wang Jindong ◽  
杜聪 Du Cong ◽  
彭清轩 Peng Qingxuan ◽  
...  

2001 ◽  
Vol 692 ◽  
Author(s):  
Hajime Asahi ◽  
Hwe-Jae Lee ◽  
Akiko Mizobata ◽  
Kenta Konishi ◽  
Osamu Maeda ◽  
...  

AbstractTlInGaAs/InP double-hetero (DH) structures were grown on (100) InP substrates by gas source MBE. The photoluminescence (PL) peak energy variation with temperature decreased with increasing Tl composition. For the DH with a Tl composition of 13%, the PL peak energy varied only slightly with temperature (−0.03 meV/K). This value corresponds to a wavelength variation of 0.04 nm/K and is much smaller than that of the lasing wavelength of InGaAsP/InP distributed feedback laser diodes (0.1 nm/K). TlInGaAs/InP light emitting diodes with 6% Tl composition were fabricated and the small temperature variation of the electroluminescence peak energy (−0.09 meV/K) was observed at the wavelength around 1.58 μm. The results are promising to realize the temperature-independent wavelength laser diodes, which are important in the wavelength division multiplexing (WDM) optical fiber communication systems.


2021 ◽  
Vol 5 (2) ◽  
pp. 90-103
Author(s):  
Nawroz Hamadamen

This paper investigates for rising optical fiber transmission strength, increasing bandwidth, and decreasing communication system weakness by using wavelength division multiplexing (WDM). WDM gives today's distention speed and communication traffic. Systems using WDM faces nonlinearities, which the most intensive nonlinear attack is, four wave mixing (FWM). FWM creates and increases crosstalk between WDM channels as a result slows down and impairs the performance of the communication system. This investigation uses orthogonal frequency division multiplexing (OFDM) for evaluating execution of WDM fiber system by repairing Polarization Mode Dispersion (PMD). We took results in the case of trying PMD-Emulator and without trying PMD-Emulator in the system design. We compared the results got in both cases. Furthermore, we compared the performance of the system with the investigations done using different ways, methods, and techniques for compensating PMD and FWM appears in WDM systems. As PMD-Emulator, helps enhancing the system design performance, and OFDM gives the feature of robustness and useful execution to the system. OFDM examined by appointing interfered orthogonal signal sets, for 16 channels; with equally spaced OFDM channels. Oure results showed that the optical fiber communication system using OFDM technique gives perfect removing FWM signal crosstalk, and accurate data transmission, comparing to other techniques used in other researches. We got a decreased FWM power to -77dBm, and the BER of -0.317. Furthermore, the system quality increased with applying PMD-Emulator and OFDM. In addition, using PMD-Emulator in the system design raised the results effectiveness. The program used in the present work is optisystem-15, and the results obtained in this study coincide with the theoretical and actual results obtained by the previous studies.


Sign in / Sign up

Export Citation Format

Share Document