scholarly journals Natural dyes as photo-sensitizer in solar cells

BIBECHANA ◽  
2020 ◽  
Vol 17 ◽  
pp. 28-33
Author(s):  
Surendra Bikram Silwal ◽  
Rameshwar Adhikari ◽  
Prakash Lamichhane ◽  
Netra Lal Bhandari

The objective of this research is to employ the natural dyes in dye-sensitized solar cell (DSSC). On account of eco-friendly, renewable, and non-hazardous properties of natural dyes over silicon, a semiconductor, photo-sensitizer in conventional solar cells,  cyclohexane extract of Terminalia alata, a natural dye, was employed as photo-sensitizer. The photoanodes ZnO and 5% Al-doped ZnO for DSSCs were developed by spray pyrolysis. The X-ray diffraction (XRD) has shown hexagonal wurtzite structure of ZnO with lattice constants a = 3.2487 Å and b = 5.1518 Å having particle size 25.85 nm for ZnO and 33.17 nm for Al-doped ZnO. The DSSC properties such as solar conversion efficiency (η), short-circuit current density (Jsc), open-circuit voltage (Voc), and fill factor (FF) were found to be 0.31%, 2.10 mA/cm2, 0.73V, and 45% for ZnO photoanode and 0.37%, 2.25mA/cm2, 0.70 V, and 52.10% for 5% Al-doped photoanode respectively. BIBECHANA 17 (2020) 27-32

2018 ◽  
Vol 8 (9) ◽  
pp. 1697 ◽  
Author(s):  
Qian Liu ◽  
Nan Gao ◽  
Dejiang Liu ◽  
Jinglin Liu ◽  
Yuanzuo Li

A series of natural photoactive dyes, named as D1–D6 were successfully extracted from six kinds of plant leaves for solar cells. The photoelectrical properties of dyes were measured via UV-Vis absorption spectra, cyclic voltammetry as well as photovoltaic measurement. To theoretically reveal the experimental phenomena, the chlorophyll was selected as the reference dye, where the ground and excited state properties of chlorophyll were calculated via density functional theory (DFT) and time-dependent density functional theory (TD-DFT). The experimental results show that the absorption peaks of those dyes are mainly distributed in the visible light regions of 400–420 nm and 650–700 nm, which are consistent with the absorption spectrum of chlorophyll. The photoelectrical conversion efficiencies of the solar cells sensitized by the six kinds of natural dyes are in the order of D1 > D4 > D2 > D5 > D6 > D3. The dye D1 performance exhibits the highest photoelectrical conversion efficiency of 1.08% among the investigated six natural dyes, with an open circuit voltage of 0.58 V, a short-circuit current density of 2.64 mA cm−2 and a fill factor of 0.70.


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1684
Author(s):  
Alessandro Romeo ◽  
Elisa Artegiani

CdTe is a very robust and chemically stable material and for this reason its related solar cell thin film photovoltaic technology is now the only thin film technology in the first 10 top producers in the world. CdTe has an optimum band gap for the Schockley-Queisser limit and could deliver very high efficiencies as single junction device of more than 32%, with an open circuit voltage of 1 V and a short circuit current density exceeding 30 mA/cm2. CdTe solar cells were introduced at the beginning of the 70s and they have been studied and implemented particularly in the last 30 years. The strong improvement in efficiency in the last 5 years was obtained by a new redesign of the CdTe solar cell device reaching a single solar cell efficiency of 22.1% and a module efficiency of 19%. In this paper we describe the fabrication process following the history of the solar cell as it was developed in the early years up to the latest development and changes. Moreover the paper also presents future possible alternative absorbers and discusses the only apparently controversial environmental impacts of this fantastic technology.


Energies ◽  
2021 ◽  
Vol 14 (14) ◽  
pp. 4268
Author(s):  
Jessica de Wild ◽  
Gizem Birant ◽  
Guy Brammertz ◽  
Marc Meuris ◽  
Jef Poortmans ◽  
...  

Ultrathin Cu(In,Ga)Se2 (CIGS) absorber layers of 550 nm were grown on Ag/AlOx stacks. The addition of the stack resulted in solar cells with improved fill factor, open circuit voltage and short circuit current density. The efficiency was increased from 7% to almost 12%. Photoluminescence (PL) and time resolved PL were improved, which was attributed to the passivating properties of AlOx. A current increase of almost 2 mA/cm2 was measured, due to increased light scattering and surface roughness. With time of flight—secondary ion mass spectroscopy, the elemental profiles were measured. It was found that the Ag is incorporated through the whole CIGS layer. Secondary electron microscopic images of the Mo back revealed residuals of the Ag/AlOx stack, which was confirmed by energy dispersive X-ray spectroscopy measurements. It is assumed to induce the increased surface roughness and scattering properties. At the front, large stains are visible for the cells with the Ag/AlOx back contact. An ammonia sulfide etching step was therefore applied on the bare absorber improving the efficiency further to 11.7%. It shows the potential of utilizing an Ag/AlOx stack at the back to improve both electrical and optical properties of ultrathin CIGS solar cells.


2017 ◽  
Vol 80 (1) ◽  
Author(s):  
Zainal Arifin ◽  
Sudjito Soeparman ◽  
Denny Widhiyanuriyawan ◽  
Suyitno Suyitno ◽  
Argatya Tara Setyaji

Natural dyes have attracted much researcher’s attention due to their low-cost production, simple synthesis processes and high natural abundance. However the dye-sensitized solar cells (DSSCs) based natural dyes have higher tendency to degradation. This article reports on the enhancement of performance and stability of dye-sensitized solar cells (DSSCs) using natural dyes. The natural dyes were extracted from papaya leaves by ethanol solvent at a temperature of 50 °C. Then the extracted dyes were isolated and modified into Mg-chlorophyll using column chromatography. Mg-chlorophyll was then synthesized into Fe-chlorophyll to improve stability. The natural dyes were characterized using ultraviolet-visible spectrometry, Fourier transform infrared spectroscopy, and cyclic voltammetry. The performance of DSSCs was tested using a solar simulator. The results showed the open-circuit voltage, the short-circuit current density, and the efficiency of the extracted papaya leaves-based DSSCs to be 325 mV, 0.36 mA/cm2, and 0.07%, respectively. Furthermore, the DSSCs with purified chlorophyll provide high open-circuit voltage of 425 mV and short-circuit current density of 0.45 mA/cm2. The use of Fe-chlorophyll for sensitizing the DSSCs increases the efficiency up to 2.5 times and the stability up to two times. The DSSCs with Fe-chlorophyll dyes provide open-circuit voltage, short-circuit current density, and efficiency of 500 mV, 0.62 mA/cm2, and 0.16%, respectively. Further studies to improve the current density and stability of natural dye-based DSSCs along with an improvement in the anchor between dyes and semiconducting layers are required.


2015 ◽  
Vol 2015 ◽  
pp. 1-4
Author(s):  
Xiaojun Zhu ◽  
Xiaoping Zou ◽  
Hongquan Zhou

We use the successive ionic layer adsorption and reaction (SILAR) method for the preparation of quantum dot sensitized solar cells, to improve the performance of solar cells by doping quantum dots. We tested the UV-Vis absorption spectrum of undoped CdS QDSCs and Cu doped CdS QDSCs with different doping ratios. The doping ratios of copper were 1 : 100, 1 : 500, and 1 : 1000, respectively. The experimental results show that, under the same SILAR cycle number, Cu doped CdS quantum dot sensitized solar cells have higher open circuit voltage, short circuit current density photoelectric conversion efficiency than undoped CdS quantum dots sensitized solar cells. Refinement of Cu doping ratio are 1 : 10, 1 : 100, 1 : 200, 1 : 500, and 1 : 1000. When the proportion of Cu and CdS is 1 : 10, all the parameters of the QDSCs reach the minimum value, and, with the decrease of the proportion, the short circuit current density, open circuit voltage, and the photoelectric conversion efficiency are all increased. When proportion is 1 : 500, all parameters reach the maximum values. While with further reduction of the doping ratio of Cu, the parameters of QDSCs have a decline tendency. The results showed that, in a certain range, the lower the doping ratio of Cu, the better the performance of quantum dot sensitized solar cell.


2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Yuanzuo Li ◽  
Huixing Li ◽  
Peng Song ◽  
Chaofan Sun

Three natural dyes (Forsythia suspensa, Herba Violae, and Corn leaf) have been investigated as potential sensitizers for dye-sensitized solar cells. UV-vis absorption spectra reveal that three natural dyes mainly contain the compound of pheophytin a. Among three DSSCs, the highest photo electronic conversion efficiencyηis 0.96% with open circuit voltage (VOC) of 0.66 V, short circuit current density (ISC ) of 1.97 mA cm−2, and fill factor (ff) of 0.74. Theoretical time-dependent density functional theory and charge difference density are used to explore the nature of excited states. Results demonstrate that the first state is an intramolecular charge transfer (ICT) state, and electron injection could occur owing to the thermodynamically driving force.


Author(s):  
Nur Shakina Mohd Shariff ◽  
Puteri Sarah Mohamad Saad ◽  
Mohamad Rusop Mahmood

There has been an increasing interest towards organic solar cells after the discovery of conjugated polymer and bulk-heterojunction concept. Eventhough organic solar cells are less expensive than inorganic solar cells but the power conversion energy is still considered low. The main objective of this research is to investigate the effect of the P3HT’s thickness and concentration towards the efficiency of the P3HT:Graphene solar cells. A simulation software that is specialize for photovoltaic called SCAPS is used in this research to simulate the effect on the solar cells. The solar cell’s structure will be drawn inside the simulation and the parameters for each layers is inserted. The result such as the open circuit voltage (Voc), short circuit current density (Jsc), fill factor (FF), efficiency (η), capacitance-voltage (C-V) and capacitance-frequency (C-f) characteristic will be calculated by the software and all the results will be put into one graph.


Energies ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 450 ◽  
Author(s):  
Miron Krassas ◽  
Christos Polyzoidis ◽  
Pavlos Tzourmpakis ◽  
Dimitriοs M. Kosmidis ◽  
George Viskadouros ◽  
...  

A conjugated, ladder-type multi-fused ring 4,7-dithienbenzothiadiazole:thiophene derivative, named as compound ‘T’, was for the first time incorporated, within the PTB7:PC71BM photoactive layer for inverted ternary organic solar cells (TOSCs) realization. The effective energy level offset caused by compound T between the polymeric donor and fullerene acceptor materials, as well as its resulting potential as electron cascade material contribute to an enhanced exciton dissociation, electron transfer facilitator and thus improved overall photovoltaic performance. The engineering optimization of the inverted TOSC, ITO/PFN/PTB7:Compound T(5% v/v):PC71BM/MoO3/Al, resulted in an overall power conversion efficiency (PCE) of 8.34%, with a short-circuit current density (Jsc) of 16.75 mA cm−2, open-circuit voltage (Voc) of 0.74 V and a fill factor (FF) of 68.1%, under AM1.5G illumination. This photovoltaic performance was improved by approximately 12% with respect to the control binary device.


2011 ◽  
Vol 378-379 ◽  
pp. 601-605 ◽  
Author(s):  
Saleh N. Alamri ◽  
M. S. Benghanem ◽  
A. A. Joraid

This study investigates the preparation of the three main layers of a CdS/CdTe thin film solar cell using a single vacuum system. A Close Space Sublimation System was constructed to deposit CdS, CdTe and CdCl2 solar cell layers. Two hot plates were used to heat the source and the substrate. Three fused silica melting dishes were used as containers for the sources. The properties of the deposited CdS and CdTe films were determined via Atomic force microscopy, scanning electron microscopy, X-ray diffraction and optical transmission spectroscopy. An J-V characterization of the fabricated CdS/CdTe solar cells was performed under solar radiation. The short-circuit current density, Jsc, the open-circuit voltage, Voc, fill factor, FF and conversion efficiency, η, were measured and yielded values of 27 mA/cm2, 0.619 V, 58% and 9.8%, respectively.


2011 ◽  
Vol 10 (04n05) ◽  
pp. 803-807
Author(s):  
T. S. KRISHNAN ◽  
S. SUNDAR KUMAR IYER

This work addresses the shelf life characteristics of P3HT: PCBM blend based organic solar cells (OSC) fabricated with Ca–Al and LiF–Al cathodes. Some of these devices are encapsulated in nitrogen ambient and some in room ambient. Device electrical characteristics are studied under both dark and light. In the analysis under dark ambient conditions, the degradation in peak dark current is monitored over time (in days) and an empirical model is postulated for the degradation based on statistical curve fitting techniques. In the analysis under light, degradation of parameters such as fill factor (FF), open circuit voltage (V oc ) and short circuit current density (J sc ) is monitored over time in these devices (for different cathodes and different ambients) and the results are analyzed and compared. Also, accelerated stress tests are conducted wherein the devices are subjected to continuous illumination for a period of 1.5 h under two different intensities (0.76 sun and 1 sun) and again, the results are analyzed and compared. A model is fitted to the observed degradation in normalized J sc and the degradation constants (k deg ) are obtained. It is seen that the devices fabricated with cathode as LiF–Al and being encapsulated in nitrogen ambient provide the best performance over time.


Sign in / Sign up

Export Citation Format

Share Document