scholarly journals Study of Gibberellic Acid Production by Solid State Fermentation Using Fusarium Moniliforme Sheldon

2016 ◽  
Vol 4 (3) ◽  
pp. 402-407 ◽  
Author(s):  
Rakeshkumar Ramanlal Panchal ◽  
Piyushbhai Vishnubhai Desai

Gibberellic acid production using Fusarium moniliforme, isolated from wilted sugarcane plant has been investigated by solid state fermentation (SSF). The gibberellic acid production of 154mgm/gm was obtained on commercial wheat bran (CWB) mineral salt acid bed in 500 ml flasks after 168 h incubation. The gibberellic acid production rate was about 0.6 to 0.9 mgm/gm/hr during 96 to 168 h. Different carbon sources namely sucrose, lactose, maltose, soluble starch, glycerol, wheat flour and maize flour were tested as an additional substrate along with CWB at the concentration of 25% w/w or v/w base to observe its effects on gibberellic acid production. Soluble starch has been proved the best additional carbon source for gibberellic acid production, which yielded 1160mgm/gm of gibberellic acid after 168 h. Similarly, various nitrogen sources namely NH4Cl, NH4NO3, (NH4)2SO4, (NH4)MoO4 and urea were tested as an additional substrate at the concentration of 0.07% w/w of CWB. Urea was proved as the best nitrogen source which yielded 532 mgm/gm of gibberellic acid after 168 h incubation. We have observed about 7.5-fold and 3.5-fold increase in gibberellic acid production upon addition of soluble starch and urea respectively, in CWB using Fusarium moniliforme.Int J Appl Sci Biotechnol, Vol 4(3): 402-407

2011 ◽  
Vol 3 (2) ◽  
pp. 268-273
Author(s):  
K. N. Geetha ◽  
K. Jeyaprakash ◽  
Y. P. Nagaraja

The amylase producing fungi were isolated from spoiled fruits, vegetables and soil, in and around Bangalore, Karnataka, India. The isolates were identified and five fungal species were screened. The best amylase producer among them, Aspergillus sp was selected for enzyme production by both sub merged fermentation using mineral salt medium (MSM) and solid state fermentations using wheat bran as a solid substrate. The various parameters influencing solid state fermentation were optimized. The most important factors are such as pH, incubation temperature, incubation period, carbon sources, nitrogen sources and moisture content. The maximum amount of enzyme production was obtained when solid state fermentation was carried out with soluble starch as carbon source and beef extract (1% each) as nitrogen source, optimum conditions of pH 7.0, an incubation temperature of 25 (±2) °C, incubation time 96 h and 62% moisture content.


2021 ◽  
Author(s):  
Janani Balraj ◽  
Thandeeswaran Murugesan ◽  
Vidhya Kalieswaran ◽  
Karunyadevi Jairaman ◽  
Devippriya Esakkimuthu ◽  
...  

Abstract Our earlier paper had established the fact that new soil fungi known as Cunninghamella blakesleeana is potent enough to produce lovastatin significantly. At present, there are no reports on the media optimization for the lovastatin production. Hence, the objective is to optimize the fermentation conditions for lovastatin production by Cunninghamella blakesleeana under Solid State fermentation (SSF) condition through screening the critical factors by one factor at a time and then, optimize the factors selected from screening using statistical approaches. SSF was carried using the pure culture of Cunninghamella blakesleeana KP780148.1 with wheat bran as substrate. Initial screening was performed for physical parameters, carbon sources and nitrogen sources and then optimized the selected parameters through PBD and BBD. Screening result indicated the optimum values of the analysed parameter for the maximal production of lovastatin by Cunninghamella blakesleeana were selected. Out of the nine factors MgSO4, (NH4)2SO4, pH and Incubation period were found to influence the lovastatin production significantly after PBD. The optimal levels of these variables and the effect of their mutual interactions on lovastatin production were determined using BBD surface design. The optimum medium composition was found to be MgSO4(0.2 g/L), (NH4)2 SO4 (12.5 g/L), pH (6) and Incubation period (7 days). Experimental studies showed a yield of 7.39 mg/g at the above optimized conditions which were observed to be very nearby to the predicted value and hence the model was successfully validated. Hence, this is the first report on the optimization of critical parameters for lovastatin production by Cunninghamella blakesleeana.


2002 ◽  
Vol 102-103 (1-6) ◽  
pp. 179-192 ◽  
Author(s):  
Cristina M M Machado ◽  
Carlos R Soccol ◽  
Brás H De Oliveira ◽  
Ashok Pandey

2008 ◽  
Vol 136 ◽  
pp. S371 ◽  
Author(s):  
Ángela M. Otálvaro ◽  
Germán D. Gutiérrez ◽  
Diego A. Pierotty ◽  
Fabián A. Parada ◽  
Néstor A. Algecira

Sign in / Sign up

Export Citation Format

Share Document