scholarly journals Computational Study of the Structural, Electronic and Magnetic Properties of Nanoclusters of Cu2O and CuO: Ab-Initio Approach

2020 ◽  
Vol 6 (1) ◽  
pp. 68-72
Author(s):  
T. P. Yadav ◽  
G. C. Kaphle ◽  
A. Srivastava

The structural, electronic and magnetic properties of the nanoclusters of (Cu2O) n= 1, 2, 3 and (CuO) m = 2, 4, 6 have computationally studied. Density Functional Theory incorporated in Atomistic tool kit (ATK-DFT) calculators with exchange-correlation functional (SGGA+U) based ab-initio approach is applied for simulation and calculation of these nanoclusters. In the computational study, the nanoclusters (Cu2O)1, (Cu2O)3 , (CuO)2 and (CuO)6 show semiconducting behavior whereas (Cu2O)2 and (CuO)4 show semi-metallic behaviors. The nanoclusters (Cu2 O)1 and (Cu2O)3 show diamagnetic, (Cu2O)2 and (CuO)4 show ferromagnetic, (CuO)2 and (CuO)6 show antiferromagnetic behaviors. The magnetic moments 0.28μB and 0.03 μB are observed in the nanoclusters (Cu2O)2 and (CuO)4 while others are found to be as nonmagnetic . The total energy of nanoclusters have found to be decreasing towards total minimum energy with increasing number of atoms of copper oxides. The nanoclusters (Cu2O) n = 1, 2, 3 and (CuO) m = 2, 4, 6 are used in various applications as in the synthesis of technological materials. The analysis of the effects of bond length and binding energy with the size of nanoclsters have been presented.

2011 ◽  
Vol 217-218 ◽  
pp. 924-929
Author(s):  
Jin Hong Xue ◽  
Jing Chao Chen ◽  
Jie Yu ◽  
Jing Feng ◽  
Yong Pan ◽  
...  

Ca3Ru2O7 is new tpye of thermoelectric materials.A theoretical study is presented for the stability, electronic and magnetic properties of three phases of this new thermoelectric materials in the framework of density functional theory (DFT). The calculated cohesive energy is -7.94eV/unit. AFM2 are less stable than other pahses. Electronic calculations indicate that Ca3Ru2O7 is metallic in nature. The covalent bonds in these structures are due to orbital overlap between p bands of O and d bands of Ru, and DOS at Fermi level are dominated by d bands of Ru. FM phase have obvious magnetic moments.


2017 ◽  
Vol 1 (1) ◽  
pp. 27-36
Author(s):  
M. Rashid ◽  
M. A. Iqbal ◽  
N. A. Noor

By considering density functional theory (DFT) in terms of ab-initio investigation, we have explored the structural, electronic and magnetic properties of cubic CeCrO3 for the first time. In order to determine the structural stability of cubic CeCrO3 compound, we optimized the structure of CeCrO3 in non-magnetic (NM), ferromagnetic (FM) and Anti-ferromagnetic (AFM) phases by using PBE generalized gradient approximation (GGA) functional to find the exchangecorrelation potential. From structural optimization, the FM phase of CeCrO3 is observed to be stable. For computing electronic and magnetic properties, thelately advanced modified Becke and Johnson local (spin) density approximation (mBJLDA) is used. Calculated band structures and density of states plots with an integer magnetic moment of 4 μB and reveal half-metallic character. In addition, s–d exchange constants (N0α) and p–d exchange constant (N0β) are determined, which are in agreement with a distinctive magneto-optical experiment.


2004 ◽  
Vol 15 (06) ◽  
pp. 775-782
Author(s):  
J. XIANG ◽  
X. H. YAN ◽  
Y. L. MAO ◽  
Y. XIAO ◽  
S. H. WEI

Equilibrium geometries, stabilities, electronic and magnetic properties of Ti n Al (n=1–8) clusters have been studied by using density-functional theory (DFT). The ground-state structures of Ti n Al clusters have been obtained. The resulting geometries show that the aluminum atom remains on the surface of clusters. The evolution of energy difference and gap (HOMO–LUMO) with size of cluster shows Ti 4 Al cluster to be endowed with special stability. The average magnetic moments and the density of states (DOS) are also presented.


2016 ◽  
Vol 845 ◽  
pp. 105-110 ◽  
Author(s):  
Sergey Dunaevsky ◽  
Evgeny Mikhailenko

The results of "ab-initio" calculations of spin - polarized electronic structure, total energy and the local atomic magnetic moments of some manganite surfaces are presented. A slab consisting of one, three, five or, in some cases, seven layers of Mn-O atoms. is used to model the CaMnO3 (CMO), LaMnO3 (LMO) (001) surface. Total energies calculations of magnetic properties of manganites surfaces were performed using density-functional theory (DFT) and the pseudopotential method. We have found that on the surface layers without structural optimization manganese atomic magnetic moment is higher than in the bulk and “dead layers”, where all the local moments are zero, have not been found. All the above ultrathin films appeared ferromagnetic semimetals with almost complete polarization of DOS near the Fermi level.


2011 ◽  
Vol 25 (26) ◽  
pp. 2079-2090 ◽  
Author(s):  
S. M. MONIRI ◽  
Z. NOURBAKHSH ◽  
M. MOSTAJABODAAVATI

The structural, electronic and magnetic properties of MnXY ( X = Ru , Rh and Y = Ga , Ge , Sb ) Heusler alloys are studied using density functional theory by the WIEN2k package. These materials are ferromagnetic. Also they have some interesting half-metallic properties. The electron density of states, total and local magnetic moment of these alloys are calculated. We have calculated the effective Coulomb interaction U eff using the ab initio method. We have compared the magnetic moments of these alloys in GGA and LDA + U with the Slater–Pauling rule. Furthermore the effect of hydrostatic pressure on the magnetic moment of these alloys is studied. The calculated results are fitted with a second order polynomial.


2015 ◽  
Vol 645-646 ◽  
pp. 40-44 ◽  
Author(s):  
Qing Xiao Zhou ◽  
Zhi Bing Fu ◽  
Chao Yang Wang ◽  
Xi Yang ◽  
Lei Yuan ◽  
...  

The electronic and magnetic properties of graphene functionalized by 4f-orbital RE-metal atoms (Ce, Nd, Sm and Eu) were investigated by the density functional theory (DFT) calculations. The results of binding energy and geometry parameters showed that the hollow site, the center of a carbon hexagon, was the most stable adsorption structure. Furthermore, the PDOS results suggested that the electronic hybridization between the RE-adatoms and C atoms was mainly contributed by the 5d orbitals, whereas the 4f-orbital of the metal adatoms dominated the net magnetic moments of the systems significantly.


2018 ◽  
Vol 1 (1) ◽  
pp. 91-96
Author(s):  
Abeer E. Aly ◽  
D. P. Rai

The study of Cr2O3 magneto-electric material, particularly, the profound understanding of its antiferro-magnetic, is vital for its spintronics applications. In this paper, we present a study on electronic and magnetic properties of Cr2O3 crystal using the first-principles calculations based on the density functional theory. For more accurate results, additional Hubbard (U) parameter has been employed to GGA as well. Our calculated results are homogeneous with available experimental measurements. Results show the effects produced by GGA+U method upon the electronic and magnetic features of the material. We prove that, the spherically symmetric GGA+U approach for exchange correlation approximation portray is a superior depiction of electronic and magnetic properties of Cr2O3.


1999 ◽  
Vol 23 (8) ◽  
pp. 502-503
Author(s):  
Branko S. Jursic

High level ab initio and density functional theory studies are performed on highly protonated methane species.


Sign in / Sign up

Export Citation Format

Share Document