scholarly journals Effects of tungsten, chromium and zirconium on the corrosion behavior of ternary amorphous W–Cr–Zr alloys in 1 M NaOh solution

1970 ◽  
Vol 9 (9) ◽  
pp. 39-43
Author(s):  
Basu Ram Aryal ◽  
Jagadeesh Bhattarai

Simultaneous additions of tungsten, chromium and zirconium in the chromium- and zirconium-enriched sputter-deposited binary W-xCr and W-yZr are effective to improve the corrosion resistance property of the ternary amorphous W- xCr-yZr alloys after immersion for 240 h in 1 M NaOH solution open to air at 25°C. The corrosion rates of all the examined sputter-deposited (10-57)W-(18-42)Cr-(25-73)Zr alloys is higher than those of alloy-constituting elements (that is, tungsten, chromium and zirconium) in aggressive 1 M NaOH solution open to air at 25°C. The corrosion rates of all the examined sputter−deposited W–xCr–yZr alloys containing 10-57 at% tungsten, 18-42 at% chromium and 25-73 at% zirconium were in the range of 1.5-2.5 × 10−3 mm/y or lower which are more than two orders of magnitude lower than that of sputter-deposited tungsten and even about one order of magnitude lower than those of the sputter-deposited zirconium in 1 M NaOH solution. Keywords: Ternary W–Cr–Zr alloys; Amorphous; Corrosion rate; Open circuit potential; 1 M NaOH. DOI: http://dx.doi.org/10.3126/sw.v9i9.5516 SW 2011; 9(9): 39-43

1970 ◽  
Vol 25 ◽  
pp. 53-61
Author(s):  
Minu Basnet ◽  
Jagadeesh Bhattarai

The corrosion behavior of the sputter-deposited nanocrystalline W-Cr alloys wasstudied in 0.5 M NaCl and alkaline 1 M NaOH solutions at 25°C, open to air usingimmersion tests and electrochemical measurements. Chromium metal acts synergisticallywith tungsten in enhancing the corrosion resistance of the sputter-deposited W-Cr alloys soas to show higher corrosion resistance than those of alloy-constituting elements in both 0.5M NaCl and 1 M NaOH solutions. In particular, the nanocrystalline W-Cr alloys containing25-91 at% chromium showed about one order of magnitude lower corrosion rates (that is,about 1-2 × 10-3 mm.y-1) than those of tungsten and chromium metals even for prolongedimmersion in 0.5 M NaCl solution at 25°C. On the other hand, the corrosion rate of thesputter-deposited W-Cr alloys containing 25-75 at % chromium was decreased significantlywith increasing chromium content and showed lowest corrosion rates (that is, 1.5-2.0 × 10-3 mm.y-1) after immersed for prolonged immersion in 1 M NaOH solution. The corrosion ratesof these nanocrystalline W-(25-75)Cr alloys are nearly two orders of magnitude lower thanthat of tungsten and more than one order of magnitude lower corrosion rate than that ofsputter-deposited chromium metal in 1 M NaOH solution. The corrosion-resistant of all theexamined sputter-deposited W-Cr alloys in 0.5 M NaCl solution is higher than in alkaline 1M NaOH solution at 25°C. Open circuit potentials of all the examined W-Cr alloys areshifted to more noble direction with increasing the chromium content in the alloys afterimmersion for 72 h in both 0.5 M NaCl and 1 M NaOH solutions at 25°C, open to air.Keywords: Sputter deposition, nanocrystalline W-Cr alloys, corrosion test, electrochemicalmeasurement, NaCl and NaOH solutions.DOI:  10.3126/jncs.v25i0.3300Journal of Nepal Chemical Society Volume 25, 2010 pp 53-61


1970 ◽  
Vol 24 ◽  
pp. 3-11
Author(s):  
Pom Lal Kharel ◽  
Jagadish Bhattarai

The synergistic effect of chromium addition in the sputter-deposited amorphous or nanocrystalline W-Cr-(4-15)Ni alloys is studied in alkaline NaOH solutions at 25°C, open to air using immersion tests and electrochemical measurements. In 1 M NaOH solution, the addition of chromium to W-Cr-(4-15)Ni alloys containing 42-75 at % chromium increased the corrosion resistance and shifted the open circuit potential more noble so as to show higher corrosion resistance than those of alloy-constituting elements (that is, tungsten, chromium and nickel). The corrosion rates (that is, about 2-5 x 10-3 mm.y-1) of all the examined W-Cr-(4-15)Ni alloys are about two orders of magnitude lower than that of tungsten and nearly one order of magnitude lower than that of chromium metal. The open circuit potential of the W-Cr-(4-15)Ni alloys is generally increased with increasing chromium content in different concentrations of NaOH solutions. The passivity of the WCr-(4-15)Ni alloys is increased with decreasing the concentration of NaOH solutions at 25°C. Keywords: Corrosion resistance; Sputter deposition;  W-Cr-Ni alloy;  NaOH solution; Open Circuit  potential. DOI: 10.3126/jncs.v24i0.2380Journal of Nepal Chemical Society, Vol. 24, 2009 Page: 3-11


1970 ◽  
Vol 9 (9) ◽  
pp. 34-38
Author(s):  
Jagadeesh Bhattarai

Ternary amorphous W–xCr–yZr alloys containing 9--38 at % tungsten, 15--42 at % chromium and 39--73 at % zirconium were successfully prepared by direct current (DC) magnetron sputtering technique. The corrosion rates of all the examined sputter-deposited W–xCr–yZr alloys were in the range of 1 × 10−3 mm/y or lower which are nearly one order of magnitude lower than those of the sputter-deposited tungsten, chromium and zirconium metals after immersion for 240 h in 0.5 M NaCl solution open to air at 25°C. In particular, the simultaneous additions of tungsten, chromium and zirconium to the amorphous ternary W–xCr–yZr alloys in the chromium- and zirconium-enriched W--91Cr and W--88Zr alloys, respectively, showed a synergistic effects for showing the higher corrosion resistance than those of binary WCr and W--Zr alloys in neutral NaCl solution. Keywords: W–Cr–Zr alloys; Sputter deposition; Corrosion test; Open circuit potential; 0.5 M NaCl DOI: http://dx.doi.org/10.3126/sw.v9i9.5515SW 2011; 9(9): 34-38


1970 ◽  
Vol 25 ◽  
pp. 37-45
Author(s):  
Prakash Shrestha ◽  
Jagadeesh Bhattarai

The passivation behavior of the sputter-deposited amorphous or/and nanocrystallineW-Zr alloys is studied in 0.5 M NaCl and 1 M NaOH solutions at 25°C, open to air usingcorrosion tests and electrochemical measurements. Zirconium metal acts synergisticallywith tungsten in enhancing the corrosion resistance of the sputter-deposited W-Zr alloys soas to show lower corrosion rates than those of alloy-constituting elements (that is, tungstenand zirconium) in 0.5 M NaCl solution. In particular, corrosion rates of the binary W-Zralloys containing 23-76 at % zirconium are more than one order of magnitude lower thanthat of tungsten (that is, about 0.8-1.1 × 10-3 mm.y-1) and even lower than that of the sputterdepositedzirconium. On the other hand, the corrosion rates of the W-Zr alloys containing54-76 at% zirconium are nearly two orders of magnitude lower than that of tungsten andeven about one order of magnitude lower corrosion rate than that of sputter-depositedzirconium metal in alkaline 1 M NaOH solution. These results clearly revealed that thesimultaneous additions of both tungsten and zirconium metals to the sputter-depositedamorphous or nanocrystalline W-Zr alloys are effective in enhancing the corrosionresistance of the alloys in both 0.5 M NaCl and alkaline 1 M NaOH solutions at 25°C, opento air. The corrosion-resistant of all the examined binary W-Zr alloys in 0.5 M NaClsolution is higher than in 1 M NaOH solution at 25°C. In general, the open circuit potentialsof all the examined W-Zr alloys are shifted to more noble direction with increasing the alloyzirconium content in both 0.5 M NaCl and 1 M NaOH solutions.Keywords: Sputter-deposited W-Zr alloys, amorphous, corrosion test, electrochemicalmeasurement, NaCl and NaOH solutions.DOI:  10.3126/jncs.v25i0.3283Journal of Nepal Chemical Society Volume 25, 2010 pp 37-45


1970 ◽  
Vol 11 ◽  
pp. 147-152
Author(s):  
Arun Khadka ◽  
Jagadeesh Bhattarai

The corrosion and electrochemical properties of sputter-deposited nanocrystalline binary W-Mo alloys were studied after immersion for 2429 h in different concentrations of NaOH solutions open to air at 25°C using corrosion tests and open circuit potential measurements. Molybdenum acts synergistically with tungsten in enhancing the corrosion resistance of the sputter-deposited binary W-Mo alloys so as to show higher corrosion resistance than those of alloy-constituting elements (i.e. tungsten and molybdenum) after immersion for 24 h in NaOH solutions. Open circuit potentials of all the examined sputter-deposited W-Mo alloys are shifted to the more positive (noble) direction with increasing molybdenum content in the alloys. The stability of the spontaneously passivated films formed on the binary W-Mo alloys is decreased with increasing concentrations of NaOH solutions. In spite of these facts, the corrosion rates of all the examined W-Mo alloys are almost independent of concentrations of NaOH solutions after immersion for 24 h at 25°C.Key words: nanocrystalline W-Mo alloys; sputter deposition; corrosion resistance; open circuit potential; NaOH solutions DOI: 10.3126/njst.v11i0.4137Nepal Journal of Science and Technology 11 (2010) 147-152


1970 ◽  
Vol 25 ◽  
pp. 93-100
Author(s):  
Raju Ram Kumal ◽  
Jagadeesh Bhattarai

Roles of alloy-constituting elements on the corrosion behavior of the sputter-depositedamorphous W-Zr-(15-33)Cr alloys was studied in 1 M NaOH solution open to air at 25°Cusing corrosion tests and open circuit potential measurements. Zirconium and chromiummetals act synergistically with tungsten in enhancing the corrosion resistance of the sputterdepositedamorphous W-Zr-Cr alloys containing 15-33 at % chromium content so as toshow higher corrosion resistance than those of alloy-constituting elements in 1 M NaOHsolution. The corrosion rates of the amorphous W-Zr-(15-33)Cr alloys containing 9-33 at %tungsten are in the ranges of 2.0-5.0×10-3 mm.y-1 after immersion for 240 h in 1 M NaOHsolution which is about two orders of magnitude lower corrosion rates lower than that oftungsten and even slightly lower than that of the zirconium metal. The simultaneousadditions of zirconium and chromium metals in W-Zr-(15-33)Cr alloys are effective forennoblement of the open circuit potential of the tungsten metal.Keywords: W-Zr-Cr alloys, corrosion resistance, immersion test, open circuit potential, 1 MNaOH.DOI:  10.3126/jncs.v25i0.3312Journal of Nepal Chemical Society Volume 25, 2010 pp 93-100


1970 ◽  
Vol 9 ◽  
pp. 157-162
Author(s):  
Jagadeesh Bhattarai

The passivation behavior of steel rods and wires those are produced in Nepal was studied in 1 M HCl and 1 M NaOH solutions at 25°C, open to air using immersion tests and electrochemical measurements. The corrosion resistance of all the examined steel rods and wires in this work is found significantly higher in alkaline 1 M NaOH than in acidic 1 M HCl, mostly due to an ennoblement of the open circuit corrosion potentials of the steels at passive potential regions in 1 M NaOH solution at 25°C. The corrosion rate of all the examined steel rods and wires is about in the range of 1-5 x 101 mm/y in acidic 1 M HCl solution which is nearly three orders of magnitude lower corrosion resistance than in alkaline 1 M NaOH solution at 25°C. Therefore, these steel rods and wires seem to be very corrosion resistance materials in very alkaline environments like a reinforcing concrete. Key words: steels; corrosion rate; open circuit potential; immersion test; electrochemical measurements. DOI: 10.3126/njst.v9i0.3181 Nepal Journal of Science and Technology 9 (2008) 91-97


2013 ◽  
Vol 14 (1) ◽  
pp. 103-108
Author(s):  
Jagadeesh Bhattarai ◽  
Susil Baral

The corrosion behavior of the sputter–deposited amorphous and nanocrystalline W–xTa (x = 8–77) alloys was studied in 0.5 M NaCl solution open to air at 25°C using corrosion tests and electrochemical measurements. Tungsten and tantalum metals act synergistically in enhancing the corrosion resistance of the sputter–deposited W–xTa alloys and hence additions of 23 at. % of tantalum or more to the sputter–deposited W–xTa alloys were found to be effective to achieve significantly high corrosion resistance properties of the alloys than those of alloy– constituting elements. In particular, the corrosion rate of the W–60Ta alloy showed the lowest corrosion rate (that is, 2.0×10-3). The open circuit potential of the alloys shifted noble (positive) direction with immersion time. Addition of tantalum metal in W–xTa alloys is effective for ennoblement of the open circuit corrosion potential of the tungsten metal in 0.5 M NaCl solution open to air at 25°C. Nepal Journal of Science and Technology Vol. 14, No. 1 (2013) 103-108 DOI: http://dx.doi.org/10.3126/njst.v14i1.8929


1970 ◽  
Vol 25 ◽  
pp. 75-82
Author(s):  
Basu Ram Aryal ◽  
Jagadeesh Bhattarai

The synergistic effect of the simultaneous additions of tungsten and zirconium in thesputter-deposited amorphous or nanocrystalline Zr-(12-21)Cr-W alloys is studied in 0.5 MNaCl solution open to air at 25°C using corrosion tests and open circuit potentialmeasurements. Corrosion rates of the sputter-deposited Zr-(12-21)Cr-W alloys containing10-80 at % tungsten (that is, 0.95-1.85 x 10-2 mm.y-1) are more than one order of magnitudelower than that of the sputter-deposited tungsten and even lower than those of zirconium aswell as chromium in 0.5 M NaCl solution. The addition of 8-73 at % zirconium content inthe sputter-deposited binary W-(12-21)Cr alloys seems to be more effective to improve thecorrosion-resistant properties of the sputter-deposited ternary Zr-Cr-W alloys containing12-21 at % chromium in 0.5 M NaCl solution. The sputter-deposited Zr-(17-21)Cr-W alloyscontaining an adequate amounts of zirconium metal showed the more stable passivity andshowed higher corrosion resistance than those of alloy-constituting elements in 0.5 M NaClsolution open to air at 25°C.Keywords: Zr-(12-21)Cr-W alloys, sputter deposition, corrosion test, open circuit potential,0.5 M NaCl.DOI:  10.3126/jncs.v25i0.3305Journal of Nepal Chemical Society Volume 25, 2010 pp 75-82


1970 ◽  
Vol 22 ◽  
pp. 34-40
Author(s):  
J. Bhattarai ◽  
A. Kafle ◽  
N. P. Bhattarai

The passivation behavior of carbon steel rods of Nepal is studied in 1 M HCl, 0.5 M NaCl and 1 M NaOH solutions at 25°C, open to air using corrosion tests and electrochemical measurements. The corrosion rate of all the examined steel rods is significantly lower in 1 M NaOH solution (about 10-3 mm/y) than those in 0.5 M NaCl (about 10-2 mm/y) and 1 M HCl (about 101-102 mm/y) solutions. The corrosion rate of SR71 steel rod is remarkably lower (3.65 mm/y) than those of other four different steel rods (3-4 x 102 mm/y) of Nepal in 1 M HCl solution. The ennoblement of the open circuit potentials of all the examined steel rod specimens is clearly observed in 1 M NaOH solution than those in 0.5 M NaCl and 1 M HCl solutions. The open circuit potentials of the steel rods are in the passive potential regions of the iron wire in 1 M NaOH solution. Therefore, steel rods of different companies of Nepal showed significantly high corrosion resistance in 1 M NaOH solution at 25°C.DOI: 10.3126/jncs.v22i0.520Journal of Nepal Chemical SocietyVol. 22, 2007 pp.34-40


Sign in / Sign up

Export Citation Format

Share Document