scholarly journals Roles of alloying elements on the corrosion behavior of sputter-deposited amorphous W-Cr-Zr alloys in 0.5m NaCl solution

1970 ◽  
Vol 9 (9) ◽  
pp. 34-38
Author(s):  
Jagadeesh Bhattarai

Ternary amorphous W–xCr–yZr alloys containing 9--38 at % tungsten, 15--42 at % chromium and 39--73 at % zirconium were successfully prepared by direct current (DC) magnetron sputtering technique. The corrosion rates of all the examined sputter-deposited W–xCr–yZr alloys were in the range of 1 × 10−3 mm/y or lower which are nearly one order of magnitude lower than those of the sputter-deposited tungsten, chromium and zirconium metals after immersion for 240 h in 0.5 M NaCl solution open to air at 25°C. In particular, the simultaneous additions of tungsten, chromium and zirconium to the amorphous ternary W–xCr–yZr alloys in the chromium- and zirconium-enriched W--91Cr and W--88Zr alloys, respectively, showed a synergistic effects for showing the higher corrosion resistance than those of binary WCr and W--Zr alloys in neutral NaCl solution. Keywords: W–Cr–Zr alloys; Sputter deposition; Corrosion test; Open circuit potential; 0.5 M NaCl DOI: http://dx.doi.org/10.3126/sw.v9i9.5515SW 2011; 9(9): 34-38

1970 ◽  
Vol 25 ◽  
pp. 75-82
Author(s):  
Basu Ram Aryal ◽  
Jagadeesh Bhattarai

The synergistic effect of the simultaneous additions of tungsten and zirconium in thesputter-deposited amorphous or nanocrystalline Zr-(12-21)Cr-W alloys is studied in 0.5 MNaCl solution open to air at 25°C using corrosion tests and open circuit potentialmeasurements. Corrosion rates of the sputter-deposited Zr-(12-21)Cr-W alloys containing10-80 at % tungsten (that is, 0.95-1.85 x 10-2 mm.y-1) are more than one order of magnitudelower than that of the sputter-deposited tungsten and even lower than those of zirconium aswell as chromium in 0.5 M NaCl solution. The addition of 8-73 at % zirconium content inthe sputter-deposited binary W-(12-21)Cr alloys seems to be more effective to improve thecorrosion-resistant properties of the sputter-deposited ternary Zr-Cr-W alloys containing12-21 at % chromium in 0.5 M NaCl solution. The sputter-deposited Zr-(17-21)Cr-W alloyscontaining an adequate amounts of zirconium metal showed the more stable passivity andshowed higher corrosion resistance than those of alloy-constituting elements in 0.5 M NaClsolution open to air at 25°C.Keywords: Zr-(12-21)Cr-W alloys, sputter deposition, corrosion test, open circuit potential,0.5 M NaCl.DOI:  10.3126/jncs.v25i0.3305Journal of Nepal Chemical Society Volume 25, 2010 pp 75-82


1970 ◽  
Vol 9 (9) ◽  
pp. 39-43
Author(s):  
Basu Ram Aryal ◽  
Jagadeesh Bhattarai

Simultaneous additions of tungsten, chromium and zirconium in the chromium- and zirconium-enriched sputter-deposited binary W-xCr and W-yZr are effective to improve the corrosion resistance property of the ternary amorphous W- xCr-yZr alloys after immersion for 240 h in 1 M NaOH solution open to air at 25°C. The corrosion rates of all the examined sputter-deposited (10-57)W-(18-42)Cr-(25-73)Zr alloys is higher than those of alloy-constituting elements (that is, tungsten, chromium and zirconium) in aggressive 1 M NaOH solution open to air at 25°C. The corrosion rates of all the examined sputter−deposited W–xCr–yZr alloys containing 10-57 at% tungsten, 18-42 at% chromium and 25-73 at% zirconium were in the range of 1.5-2.5 × 10−3 mm/y or lower which are more than two orders of magnitude lower than that of sputter-deposited tungsten and even about one order of magnitude lower than those of the sputter-deposited zirconium in 1 M NaOH solution. Keywords: Ternary W–Cr–Zr alloys; Amorphous; Corrosion rate; Open circuit potential; 1 M NaOH. DOI: http://dx.doi.org/10.3126/sw.v9i9.5516 SW 2011; 9(9): 39-43


1970 ◽  
Vol 25 ◽  
pp. 53-61
Author(s):  
Minu Basnet ◽  
Jagadeesh Bhattarai

The corrosion behavior of the sputter-deposited nanocrystalline W-Cr alloys wasstudied in 0.5 M NaCl and alkaline 1 M NaOH solutions at 25°C, open to air usingimmersion tests and electrochemical measurements. Chromium metal acts synergisticallywith tungsten in enhancing the corrosion resistance of the sputter-deposited W-Cr alloys soas to show higher corrosion resistance than those of alloy-constituting elements in both 0.5M NaCl and 1 M NaOH solutions. In particular, the nanocrystalline W-Cr alloys containing25-91 at% chromium showed about one order of magnitude lower corrosion rates (that is,about 1-2 × 10-3 mm.y-1) than those of tungsten and chromium metals even for prolongedimmersion in 0.5 M NaCl solution at 25°C. On the other hand, the corrosion rate of thesputter-deposited W-Cr alloys containing 25-75 at % chromium was decreased significantlywith increasing chromium content and showed lowest corrosion rates (that is, 1.5-2.0 × 10-3 mm.y-1) after immersed for prolonged immersion in 1 M NaOH solution. The corrosion ratesof these nanocrystalline W-(25-75)Cr alloys are nearly two orders of magnitude lower thanthat of tungsten and more than one order of magnitude lower corrosion rate than that ofsputter-deposited chromium metal in 1 M NaOH solution. The corrosion-resistant of all theexamined sputter-deposited W-Cr alloys in 0.5 M NaCl solution is higher than in alkaline 1M NaOH solution at 25°C. Open circuit potentials of all the examined W-Cr alloys areshifted to more noble direction with increasing the chromium content in the alloys afterimmersion for 72 h in both 0.5 M NaCl and 1 M NaOH solutions at 25°C, open to air.Keywords: Sputter deposition, nanocrystalline W-Cr alloys, corrosion test, electrochemicalmeasurement, NaCl and NaOH solutions.DOI:  10.3126/jncs.v25i0.3300Journal of Nepal Chemical Society Volume 25, 2010 pp 53-61


1970 ◽  
Vol 11 ◽  
pp. 147-152
Author(s):  
Arun Khadka ◽  
Jagadeesh Bhattarai

The corrosion and electrochemical properties of sputter-deposited nanocrystalline binary W-Mo alloys were studied after immersion for 2429 h in different concentrations of NaOH solutions open to air at 25°C using corrosion tests and open circuit potential measurements. Molybdenum acts synergistically with tungsten in enhancing the corrosion resistance of the sputter-deposited binary W-Mo alloys so as to show higher corrosion resistance than those of alloy-constituting elements (i.e. tungsten and molybdenum) after immersion for 24 h in NaOH solutions. Open circuit potentials of all the examined sputter-deposited W-Mo alloys are shifted to the more positive (noble) direction with increasing molybdenum content in the alloys. The stability of the spontaneously passivated films formed on the binary W-Mo alloys is decreased with increasing concentrations of NaOH solutions. In spite of these facts, the corrosion rates of all the examined W-Mo alloys are almost independent of concentrations of NaOH solutions after immersion for 24 h at 25°C.Key words: nanocrystalline W-Mo alloys; sputter deposition; corrosion resistance; open circuit potential; NaOH solutions DOI: 10.3126/njst.v11i0.4137Nepal Journal of Science and Technology 11 (2010) 147-152


2012 ◽  
Vol 10 (10) ◽  
pp. 29-32
Author(s):  
Jagadeesh Bhattarai

The passivation behavior of the sputter-deposited W-xMo alloys was studied in 0.5 M NaCl solution open to air at 25°C using immersion tests and electrochemical measurements. Corrosion rates of the W-xMo alloys containing less than 50 at% molybdenum content are in the range of 1.7-2.0 x10-2 mm/y and are slightly lower than that of tungsten metal whereas the corrosion rates of the alloys containing more than 50 at% molybdenum increased with the addition of molybdenum in the alloys. The W-83Mo alloy showed active-passive transition and transpassive dissolution. The open circuit potential of all the examined W-xMo alloys is shifted to noble direction with the addition of molybdenum content in the alloys. Scientific World, Vol. 10, No. 10, July 2012 p29-32 DOI: http://dx.doi.org/10.3126/sw.v10i10.6858


1970 ◽  
Vol 25 ◽  
pp. 37-45
Author(s):  
Prakash Shrestha ◽  
Jagadeesh Bhattarai

The passivation behavior of the sputter-deposited amorphous or/and nanocrystallineW-Zr alloys is studied in 0.5 M NaCl and 1 M NaOH solutions at 25°C, open to air usingcorrosion tests and electrochemical measurements. Zirconium metal acts synergisticallywith tungsten in enhancing the corrosion resistance of the sputter-deposited W-Zr alloys soas to show lower corrosion rates than those of alloy-constituting elements (that is, tungstenand zirconium) in 0.5 M NaCl solution. In particular, corrosion rates of the binary W-Zralloys containing 23-76 at % zirconium are more than one order of magnitude lower thanthat of tungsten (that is, about 0.8-1.1 × 10-3 mm.y-1) and even lower than that of the sputterdepositedzirconium. On the other hand, the corrosion rates of the W-Zr alloys containing54-76 at% zirconium are nearly two orders of magnitude lower than that of tungsten andeven about one order of magnitude lower corrosion rate than that of sputter-depositedzirconium metal in alkaline 1 M NaOH solution. These results clearly revealed that thesimultaneous additions of both tungsten and zirconium metals to the sputter-depositedamorphous or nanocrystalline W-Zr alloys are effective in enhancing the corrosionresistance of the alloys in both 0.5 M NaCl and alkaline 1 M NaOH solutions at 25°C, opento air. The corrosion-resistant of all the examined binary W-Zr alloys in 0.5 M NaClsolution is higher than in 1 M NaOH solution at 25°C. In general, the open circuit potentialsof all the examined W-Zr alloys are shifted to more noble direction with increasing the alloyzirconium content in both 0.5 M NaCl and 1 M NaOH solutions.Keywords: Sputter-deposited W-Zr alloys, amorphous, corrosion test, electrochemicalmeasurement, NaCl and NaOH solutions.DOI:  10.3126/jncs.v25i0.3283Journal of Nepal Chemical Society Volume 25, 2010 pp 37-45


1970 ◽  
Vol 24 ◽  
pp. 3-11
Author(s):  
Pom Lal Kharel ◽  
Jagadish Bhattarai

The synergistic effect of chromium addition in the sputter-deposited amorphous or nanocrystalline W-Cr-(4-15)Ni alloys is studied in alkaline NaOH solutions at 25°C, open to air using immersion tests and electrochemical measurements. In 1 M NaOH solution, the addition of chromium to W-Cr-(4-15)Ni alloys containing 42-75 at % chromium increased the corrosion resistance and shifted the open circuit potential more noble so as to show higher corrosion resistance than those of alloy-constituting elements (that is, tungsten, chromium and nickel). The corrosion rates (that is, about 2-5 x 10-3 mm.y-1) of all the examined W-Cr-(4-15)Ni alloys are about two orders of magnitude lower than that of tungsten and nearly one order of magnitude lower than that of chromium metal. The open circuit potential of the W-Cr-(4-15)Ni alloys is generally increased with increasing chromium content in different concentrations of NaOH solutions. The passivity of the WCr-(4-15)Ni alloys is increased with decreasing the concentration of NaOH solutions at 25°C. Keywords: Corrosion resistance; Sputter deposition;  W-Cr-Ni alloy;  NaOH solution; Open Circuit  potential. DOI: 10.3126/jncs.v24i0.2380Journal of Nepal Chemical Society, Vol. 24, 2009 Page: 3-11


1970 ◽  
Vol 10 ◽  
pp. 109-113 ◽  
Author(s):  
Jagadeesh Bhattarai

The corrosion behavior of the sputter-deposited amorphous or nanocrystalline W-Ti alloys was studied in neutral 0.5 MNaCl solution at 25°C, open to air by immersion tests, electrochemical measurements and confocal scanning laser microscopic(CSLM) techniques. Titanium metal acts synergistically with tungsten in enhancing the corrosion resistance of the sputter-deposited W-Ti alloys so as to show higher corrosion resistance than those of alloy-constituting elements (that is, tungsten and titanium) in neutral 0.5 M NaCl solution. In particular, the amorphous W-Ti alloys containing 30-53 at% titanium showed lowest corrosion rates (that is, about 1 × 10-3 mm.y-1). Open circuit potentials of all the examined W-Ti alloys were shifted to more noble direction than those of the open circuit potentials of alloyconstituting elements in 0.5 M NaCl solution.Key words: Sputter deposition; W-Ti alloys; Corrosion-resistant; CSLM; NaCl solution.DOI: 10.3126/njst.v10i0.2899Nepal Journal of Science and Technology Volume 10, 2009 December Page:109-113 


1970 ◽  
Vol 23 ◽  
pp. 45-53
Author(s):  
S. P. Sah ◽  
Jagadish Bhattarai

The corrosion behavior of the sputter-deposited amorphous or/and nanocrystalline W-Ni alloys is studied in neutral 0.5 M NaCl solution at 25ºC, open to air using immersion tests, electrochemical measurements and confocal scanning laser microscopic (CSLM) techniques. In general, the corrosion rates of the W-Ni alloys containing less than 20 at% nickel content are slightly lower than that of tungsten metal whereas the corrosion rates of the alloys containing 20 at% nickel or more increased with the addition of nickel in the alloys. The pitting corrosion is observed in the nickel-rich W-69Ni alloy from CSLM studies. The open circuit corrosion potentials of all the examined W-Ni alloys are shifted to noble direction with the addition of nickel content in the alloys.Keywords: W-Ni alloys, passivation, NaCl, electrochemical measurement, pitting.DOI: 10.3126/jncs.v23i0.2096J. Nepal Chem. Soc., Vol. 23, 2008/2009 Page : 45-53


2013 ◽  
Vol 14 (1) ◽  
pp. 103-108
Author(s):  
Jagadeesh Bhattarai ◽  
Susil Baral

The corrosion behavior of the sputter–deposited amorphous and nanocrystalline W–xTa (x = 8–77) alloys was studied in 0.5 M NaCl solution open to air at 25°C using corrosion tests and electrochemical measurements. Tungsten and tantalum metals act synergistically in enhancing the corrosion resistance of the sputter–deposited W–xTa alloys and hence additions of 23 at. % of tantalum or more to the sputter–deposited W–xTa alloys were found to be effective to achieve significantly high corrosion resistance properties of the alloys than those of alloy– constituting elements. In particular, the corrosion rate of the W–60Ta alloy showed the lowest corrosion rate (that is, 2.0×10-3). The open circuit potential of the alloys shifted noble (positive) direction with immersion time. Addition of tantalum metal in W–xTa alloys is effective for ennoblement of the open circuit corrosion potential of the tungsten metal in 0.5 M NaCl solution open to air at 25°C. Nepal Journal of Science and Technology Vol. 14, No. 1 (2013) 103-108 DOI: http://dx.doi.org/10.3126/njst.v14i1.8929


Sign in / Sign up

Export Citation Format

Share Document