scholarly journals DESIGN AND SIMULATION OF A SPECIAL MEDIUM POWER INDUCTION HEATING SYSTEM FOR OXYGEN FREE COPPER PRODUCTION

2021 ◽  
Vol 25 (Special) ◽  
pp. 1-34-1-41
Author(s):  
Abdulaleem F. Salman ◽  
◽  
Firas A. Rasheed ◽  
Isam M. Abdulbaqi ◽  
◽  
...  

For sustainability purposes this project is studying the recycling of copper scrap. It is intended to melt a copper in oxygen free environment to achieve a highly conducting copper suitable for electrical installation and bus-bars manufacturing. Such a project must be started by a design and simulation step. Since the furnace composed of two main parts, the power supply and the induction coil, the power supply is a current fed inverter (CFI) simulated using Matlab, and the induction coil simulated by Finite Element Method (FEM) using ANSYS computer package. The induction coil design of this project is a special task due to the limitation of the maximum output voltage of the available power supply. The results approve the visibility of the system to be implemented in near future.

Author(s):  
Arnulfo Pérez-Pérez ◽  
Jorge Sergio Téllez-Martínez ◽  
Gregorio Hortelano-Capetillo ◽  
Jesús Israel Barraza-Fierro

In this work, the dimensions of a furnace for melting of ferrous alloys were determined. The furnace has an electromagnetic induction heating system. In addition, the parameters of electrical power supply such as frequency and power were calculated. A 5kg cast steel mass with a density of 7.81 kg / dm3 was proposed. This corresponds to a crucible volume of 0.641 dm3. The frequency was obtained from tables, which take into account the diameter of the crucible, and its value was 1 KHz. The energy consumption was determined with the heat required to bring the steel to the temperature of 1740 K, the energy losses through the walls, bottom and top of the crucible. This value was divided between the heating time (30 minutes) and resulted in a power of 4.5 KW. The development of the calculations shows that the induction heating is an efficient process and allows a fast melting of ferrous alloys.


Abstract Besides the induction coil and workpiece, the induction generator (source of ac power) is probably the most important component of an overall induction heating system. Such equipment is typically rated in terms of its frequency and maximum output power (in kilowatts). This chapter addresses the selection of power supplies in terms of these two factors as well as the operational features of different types of sources. The six different types of power supplies for induction heating applications covered in this chapter are line-frequency supplies, frequency multipliers, motor-generators, solid-state (static) inverters, spark-gap converters, and radio-frequency power supplies. The chapter discusses the design and characteristics of each of the various types of power supplies.


2019 ◽  
Vol 2 (1) ◽  
pp. 29-39 ◽  
Author(s):  
S. G. Konesev ◽  
P. A. Khlyupin

Introduction: the systems of thermal effects on thermo-dependent, viscous and highly viscous liquids under conditions of the Arctic and the Extreme North are considered. Low efficiency and danger of heating systems based on burned hydrocarbons, heated liquids and steam are shown. Electrothermal heating systems used to maintain thermo-dependent fluids in a fluid state are considered. The evaluation of the effectiveness of the application of the most common electrothermal system — heating cables (tapes). The most effective electrothermal system based on induction technologies has been determined. Materials and methods: considered methods of thermal exposure to maintain the fluid properties of thermo-dependent fluids at low extreme temperatures. Results: presents an induction heating system and options for its implementation in the Extreme North and the Arctic. Conclusions: induction heating system to minimize loss of product quality, improve the system performance under changing process conditions, eliminate fire product, to reduce the influence of the human factor.


2021 ◽  
Vol 11 (11) ◽  
pp. 4947
Author(s):  
Myung-hwan Lim ◽  
Changhee Lee

To improve recycling quality, it is necessary to develop a demolition technology that can be combined with existing crushing methods that employ large shredding-efficient equipment. The efficient collection of bones in a segmentation dismantling method must be considered according to the procedure. Furthermore, there is a need for the development of partial dismantling technologies that enable efficient remodeling, maintenance, and reinforcement. In this study, we experimentally investigated the temperature-rise characteristics of reinforced concrete through partial rapid heating during high-frequency induced heating. Accordingly, the chemical and physical vulnerability characteristics of the reinforced concrete were verified by studying the thermal conduction on the surface of the rebars and the cracks caused by the thermal expansion pressure of the rebars. Furthermore, we aimed to verify the applicability of the proposed technology by specifying the vulnerability range of the reinforced concrete based on the heating range, as well as the appropriate energy consumption. We investigated the temperature rise and temperature distribution characteristics of the rebar surfaces based on diameter, length, bar placement conditions, heating distance, heating coil location, and output, using reinforced steel of grade SD345. Maximum powers of 5, 6, and 10 kW, and inductive heating were used to achieve satisfactory results.


2018 ◽  
Vol 99 (1-4) ◽  
pp. 583-593 ◽  
Author(s):  
Dong Kyu Kim ◽  
Young Yun Woo ◽  
Kwang Soo Park ◽  
Woo Jeong Sim ◽  
Young Hoon Moon

1995 ◽  
Vol 31 (3) ◽  
pp. 2158-2161 ◽  
Author(s):  
Ghun-Deok Suh ◽  
Hong-Bae Lee ◽  
Song-Yop Hahn ◽  
Tae-Kyung Chung ◽  
Il-Han Park

Author(s):  
Hong-Seok Park ◽  
Xuan-Phuong Dang

This paper presents potential approaches that increase the energy efficiency of an in-line induction heating system for forging of an automotive crankshaft. Both heat loss reduction and optimization of process parameters are proposed scientifically in order to minimize the energy consumption and the temperature deviation in the workpiece. We applied the numerical multiobjective optimization method in conjunction with the design of experiment (DOE), mathematical approximation with metamodel, nondominated sorting genetic algorithm (GA), and engineering data mining. The results show that using the insulating covers reduces heat by an amount equivalent to 9% of the energy stored in the heated workpiece, and approximately 5.8% of the energy can be saved by process parameter optimization.


Sign in / Sign up

Export Citation Format

Share Document