Molecular regulation of IL-2 inducible T-cell kinase (Itk) and the Tec kinases: A combined experimental and computational study, with emphasis on the N-terminal Pleckstrin Homology domain

2013 ◽  
Author(s):  
Scott Edward Boyken
2019 ◽  
Vol 116 (43) ◽  
pp. 21539-21544 ◽  
Author(s):  
Neha Amatya ◽  
Thomas E. Wales ◽  
Annie Kwon ◽  
Wayland Yeung ◽  
Raji E. Joseph ◽  
...  

The pleckstrin homology (PH) domain is well known for its phospholipid targeting function. The PH-TEC homology (PHTH) domain within the TEC family of tyrosine kinases is also a crucial component of the autoinhibitory apparatus. The autoinhibitory surface on the PHTH domain has been previously defined, and biochemical investigations have shown that PHTH-mediated inhibition is mutually exclusive with phosphatidylinositol binding. Here we use hydrogen/deuterium exchange mass spectrometry, nuclear magnetic resonance (NMR), and evolutionary sequence comparisons to map where and how the PHTH domain affects the Bruton’s tyrosine kinase (BTK) domain. The data map a PHTH-binding site on the activation loop face of the kinase C lobe, suggesting that the PHTH domain masks the activation loop and the substrate-docking site. Moreover, localized NMR spectral changes are observed for non–surface-exposed residues in the active site and on the distal side of the kinase domain. These data suggest that the association of PHTH induces allosteric conformational shifts in regions of the kinase domain that are critical for catalysis. Through statistical comparisons of diverse tyrosine kinase sequences, we identify residues unique to BTK that coincide with the experimentally determined PHTH-binding surface on the kinase domain. Our data provide a more complete picture of the autoinhibitory conformation adopted by full-length TEC kinases, creating opportunities to target the regulatory domains to control the function of these kinases in a biological setting.


2018 ◽  
Author(s):  
Polina Mamontov ◽  
Ryan A. Eberwine ◽  
Jackie Perrigoue ◽  
Anuk Das ◽  
Joshua R. Friedman ◽  
...  

ABSTRACTThe Tec kinases ITK (interleukin-2-inducible T-cell kinase) and RLK (resting lymphocyte kinase) are critical components of the proximal TCR/CD3 signal transduction machinery, and data in mice suggest that ITK negatively regulates TREG differentiation. However, whether Tec kinases modulate TREG development and/or function in human T cells remains unknown. Using a novel self-delivery siRNA platform (sdRNA), we found that ITK knockdown in primary human naïve peripheral blood CD4 T cells increased Foxp3+ TREG differentiation under both TREG and T effector (Teff) cell priming conditions. ITK knockdown also enhanced the expression of the co-inhibitory receptor PD-1 on FoxP3+ T cells. TREGS differentiated in vitro (iTREG) after ITK knockdown displayed suppressive capacity against effector CD4+ T cell proliferation. ITK knockdown decreased IL-17A production in T cells primed under Th17 conditions and increased Th1 differentiation. Finally, a dual ITK/RLK Tec kinase inhibitor blocked TREG differentiation and T cell activation in general. Our data suggest that targeting ITK in human T cells may be an effective approach to boost TREG in the context of autoimmune diseases, but non-specific inhibition of other Tec family kinases may broadly inhibit T cell activation.


2004 ◽  
Vol 173 (2) ◽  
pp. 770-775 ◽  
Author(s):  
Fabien Garçon ◽  
Georges Bismuth ◽  
Daniel Isnardon ◽  
Daniel Olive ◽  
Jacques A. Nunès

2020 ◽  
Vol 11 ◽  
Author(s):  
Mahinbanu Mammadli ◽  
Weishan Huang ◽  
Rebecca Harris ◽  
Aisha Sultana ◽  
Ying Cheng ◽  
...  

Allogeneic hematopoietic stem cell transplantation is a potentially curative procedure for many malignant diseases. Donor T cells prevent disease recurrence via graft-versus-leukemia (GVL) effect. Donor T cells also contribute to graft-versus-host disease (GVHD), a debilitating and potentially fatal complication. Novel treatment strategies are needed which allow preservation of GVL effects without causing GVHD. Using murine models, we show that targeting IL-2-inducible T cell kinase (ITK) in donor T cells reduces GVHD while preserving GVL effects. Both CD8+ and CD4+ donor T cells from Itk-/- mice produce less inflammatory cytokines and show decrease migration to GVHD target organs such as the liver and small intestine, while maintaining GVL efficacy against primary B-cell acute lymphoblastic leukemia (B-ALL). Itk-/- T cells exhibit reduced expression of IRF4 and decreased JAK/STAT signaling activity but upregulating expression of Eomesodermin (Eomes) and preserve cytotoxicity, necessary for GVL effect. Transcriptome analysis indicates that ITK signaling controls chemokine receptor expression during alloactivation, which in turn affects the ability of donor T cells to migrate to GVHD target organs. Our data suggest that inhibiting ITK could be a therapeutic strategy to reduce GVHD while preserving the beneficial GVL effects following allo-HSCT treatment.


Sign in / Sign up

Export Citation Format

Share Document