scholarly journals NUMERICAL ANALYSIS ON SURFACE TEMPERATURE AND HEAT FLUX IN AN URBAN CANYON OF TWO-DIMENSIONAL RECTANGULAR CAVITY TYPE

Author(s):  
YASUTO NAKAMURA ◽  
HISASHI HIRAOKA
2005 ◽  
Vol 46 (6) ◽  
pp. 881-892 ◽  
Author(s):  
Yu-Ching Yang ◽  
Haw-Long Lee ◽  
Eing-Jer Wei ◽  
Jenn-Fa Lee ◽  
Tser-Son Wu

Author(s):  
D R Buttsworth

The transient response of an erodable ribbon element heat flux gauge has been assessed using a two-dimensional finite element (FE) analysis. Such transient heat flux gauges have previously been used for measurements in internal combustion (IC) engines. To identify the heat flux from the measurements of surface temperature, it is commonly assumed that the heat transfer within these devices is one-dimensional. A corollary of the one-dimensional treatment is that only one value of the thermal product, , is needed for identification of the transient heat flux, even though erodable heat flux gauges are constructed from at least two different materials. The current results demonstrate that two-dimensional transient heat conduction effects have a significant influence on the surface temperature measurements made with these devices. For the ribbon element gauge and timescales of interest in IC engine studies, using a one-dimensional analysis (and hence a single value of ) will lead to substantial inaccuracy in the derived heat flux measurements.


Author(s):  
Bilal Taher ◽  
Rafic Youne`s ◽  
Said Abboudi

The increasing need of structures having multiple functions orientates designers to combine materials in order to obtain, according to coupling scales, multi-materials structures. The lifetime of these structures represents the essential decisive element for study offices and manufacturers. The results of this work should add to the set of functional charges and constraints of resistance, the improvement of the lifetime as an objective to optimize a multi-material. In this study, we propose a numerical analysis by the finite elements method of the thermo mechanical behavior of these materials and their damage under thermal cyclic solicitations. The sample is a two-dimensional plate constituted of two different isotropic layers (steel, aluminum) submitted to variable thermal conditions (heat flux condition on one side and convection exchange condition on the opposite side). The sample is supposed to be fixed in one direction and free in the other. The damage model is based on the works of Lemaiˆtre and Chaboche [8]. Numerical results are presented for different forms of heat flux cycling (triangular, square and sinusoidal excitations) with a comparison of the multi-material damage for each excitation. The study is concluded by an empirical optimizing of the thickness of materials according to the total lifetime caused by thermo-mechanical effect.


2011 ◽  
Vol 697-698 ◽  
pp. 34-38 ◽  
Author(s):  
Yu Zhang ◽  
Pei Qi Ge ◽  
Lei Zhang

The invariable heat flux is always loaded in temperature simulation for grind-hardening. The heat flux is time-variant in actual process. The paper uses experiment result of grinding force to calculate out the time variation heat flux. The grinding temperature is simulated based on time variation heat flux by ANSYS software. The variation tendencies for the grinding force and the simulated surface top temperature will be discussed.


2007 ◽  
Vol 11 (4) ◽  
pp. 49-64 ◽  
Author(s):  
Hussein Mohammed ◽  
Hanim Salleh ◽  
Mohd Yusoff

The transient response of erodable surface thermocouples has been numerically assessed by using a two dimensional finite element analysis. Four types of base metal erodable surface thermocouples have been examined in this study, included type-K (alumel-chromel), type-E (chromel-constantan), type-T (copper-constantan), and type-J (iron-constantan) with 50 mm thick- ness for each. The practical importance of these types of thermocouples is to be used in internal combustion engine studies and aerodynamics experiments. The step heat flux was applied at the surface of the thermocouple model. The heat flux from the measurements of the surface temperature can be commonly identified by assuming that the heat transfer within these devices is one-dimensional. The surface temperature histories at different positions along the thermocouple are presented. The normalized surface temperature histories at the center of the thermocouple for different types at different response time are also depicted. The thermocouple response to different heat flux variations were considered by using a square heat flux with 2 ms width, a sinusoidal surface heat flux variation width 10 ms period and repeated heat flux variation with 2 ms width. The present results demonstrate that the two dimensional transient heat conduction effects have a significant influence on the surface temperature history measurements made with these devices. It was observed that the surface temperature history and the transient response for thermocouple type-E are higher than that for other types due to the thermal properties of this thermocouple. It was concluded that the thermal properties of the surrounding material do have an impact, but the properties of the thermocouple and the insulation materials also make an important contribution to the net response.


Sign in / Sign up

Export Citation Format

Share Document