scholarly journals FIELD MEASUREMENT AND CFD SIMULATION ON THERMAL ENVIRONMENT IN A MEDIUM-SIZED ELECTRICAL COMMERCIAL KITCHEN WITH CEILING SUPPLY DISPLACEMENT VENTILATION SYSTEM

2013 ◽  
Vol 78 (692) ◽  
pp. 749-756
Author(s):  
Yasushi KONDO ◽  
Moritsune SUZUKI ◽  
Hajime YOSHINO ◽  
Shunsuke OGITA ◽  
Miwako FUJITA ◽  
...  
2015 ◽  
Vol 77 (30) ◽  
Author(s):  
Noor Emilia Ahmad Shafie ◽  
Haslinda Mohamed Kamar ◽  
Nazri Kamsah

Air distribution systems inside a bus compartment are important for providing healthy and comfortable environment for passengers. Lack of ventilation inside the bus passenger compartment causes an increase level of air contaminants concentration. Particulate matters and carbon monoxide are indoor air contaminants which can affect the passenger’s health such as respiratory problem and lung cancer. This article reports the results of a CFD simulation on transport of carbon monoxide and particulate matter 1 inside a passenger compartment of a university’s shuttle bus. Fluent CFD software was used to develop a simplified three-dimensional model of the bus passenger compartment. Flow analysis was carried out using RNG k-e turbulent model for air flow, discrete phase and species transport for the air contaminants. Four variations of ventilation system namely two mixing ventilation types, combined mixing with displacement ventilation and combined mixing ventilation with underfloor air distribution was examined. The CFD simulation results show that the use of the combined mixing and displacement ventilation and also the combined mixing and underfloor ventilation types are capable of reducing the concentration of carbon monoxide and particulate matter 1 inside the bus passenger compartment by 81% and 54%, respectively.


2021 ◽  
Vol 2069 (1) ◽  
pp. 012096
Author(s):  
Wenyu Lin ◽  
Tao Zhang ◽  
Xiaohua Liu ◽  
Lingshan Li

Abstract It is important to strictly maintain the indoor thermal environment in ice arenas which have very different features to other commercial buildings. Separated air distribution system is widely used to create a dry and cold environment near the ice and a comfortable environment in the view stand. The warm and humid air from the view stand may lead to uneven temperature and humidity distribution in the rink, leading to extra energy consumption, even fog and frost on the ice. Unreasonable air supply in the ice rink zone will also make the spectators feel too cold and uncomfortable. Jet ventilation system is the most extensively used system in the ice rink zone. An innovative ground displacement ventilation system is proposed in the National Aquatics Centre, which will serve as the venue for the curling competition in the 2022 Beijing Winter Olympics. On-site measurement in the arena is carried out and computational fluid dynamics (CFD) simulation method is adopted in the present research. Measured thermal environment above the ice with different ventilation systems are compared and analysed. Result shows that the displacement ventilation system features a more obvious vertical stratification than jet ventilation system in this kind of large space buildings, and thus is more energy-efficient. A CFD model of the ice cube is setup and verified by measured data. The thermal environment in the ice rink with displacement ventilation under extreme condition is studied using the simulation method. The temperature and humidity in the ice field increases by 10.1 °C, 4.5 g/kg without air supply in the view stand, proving that the spectators in the view stand have a great impact on the thermal environment in the ice field.


2012 ◽  
Vol 52 ◽  
pp. 119-128 ◽  
Author(s):  
Han-Qing Wang ◽  
Chun-Hua Huang ◽  
Di Liu ◽  
Fu-Yun Zhao ◽  
Hai-Bo Sun ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document