scholarly journals A SIMPLE METHOD TO ESTIMATE THE BEHAVIOR OF HIGH-RISE RC FRAME BUILDINGS DURING EARTHQUAKES

1994 ◽  
Vol 59 (455) ◽  
pp. 157-166
Author(s):  
Hiroyasu SAKATA ◽  
Kazushi SHIMAZAKI ◽  
Koichi YATSUSHIGE ◽  
Akira WADA
Author(s):  
Hamood Alwashali ◽  
Md. Shafiul Islam ◽  
Debasish Sen ◽  
Jonathan Monical ◽  
Masaki Maeda

Many of the buildings which experienced damage in recent earthquakes such as the 2015 Nepal Earthquake were reinforced concrete (RC) frame buildings with unreinforced masonry infill walls. This study proposes a simplified procedure to estimate the in-plane seismic capacity of masonry infilled RC frame buildings based on concepts of the Japanese seismic evaluation standard (JBDPA, [1]). The correlation of seismic capacity and observed damage obtained using a database of 370 existing RC frame buildings with masonry infill that experienced earthquakes in Taiwan, Ecuador and Nepal is investigated. The Is index, which represents the seismic capacity of buildings in the Japanese standard, showed good correlation with the observed damage and proved to be effective as a simple method to estimate seismic capacity. The method was then applied to 103 existing buildings in Bangladesh that have not experienced a major earthquake recently. The results emphasize the necessity for urgent seismic evaluation and retrofitting of buildings in Bangladesh.


2021 ◽  
pp. 875529302098801
Author(s):  
Orlando Arroyo ◽  
Abbie Liel ◽  
Sergio Gutiérrez

Reinforced concrete (RC) frame buildings are a widely used structural system around the world. These buildings are customarily designed through standard code-based procedures, which are well-suited to the workflow of design offices. However, these procedures typically do not aim for or achieve seismic performance higher than code minimum objectives. This article proposes a practical design method that improves the seismic performance of bare RC frame buildings, using only information available from elastic structural analysis conducted in standard code-based design. Four buildings were designed using the proposed method and the prescriptive approach of design codes, and their seismic performance is evaluated using three-dimensional nonlinear (fiber) models. The findings show that the seismic performance is improved with the proposed method, with reductions in the collapse fragility, higher deformation capacity, and greater overstrength. Furthermore, an economic analysis for a six-story building shows that these improvements come with only a 2% increase in the material bill, suggesting that the proposed method is compatible with current project budgets as well as design workflow. The authors also provide mathematical justification of the method.


2020 ◽  
Vol 184 ◽  
pp. 01107
Author(s):  
Y. Kamala Raju ◽  
G.V.V. Satyanarayana ◽  
G. Arun Sai

The present decade, high rise multi-storey buildings are subjected to many external effects such as earthquake, wind loads, tidal loads, etc., in most cases high rise buildings have more vulnerable to earthquake and wind loads. Most of the reinforced concrete multi-storeyed frame buildings were heavily damaged and many of them completely collapsed during due earthquakes. RC frame buildings were severely damaged due to various deficiencies when proper codal provisions are not designed. A study is need to study the behaviour of the RC framed structure under earthquake load to reduce the damage caused by earthquake forces In this investigation a RC framed building of G+20 storeyed is considered in several seismic zones under different soils as per Indian Standard code IS 1893(part1):2016, using STAAD. Pro V8i as software tool. Finally evaluate the ultimate Base shear using Equivalent static method and Response spectrum method addressing under design forces.


Sign in / Sign up

Export Citation Format

Share Document