scholarly journals RCC Highrised Residential Buildings its Influence on Earthquake Loads

2020 ◽  
Vol 184 ◽  
pp. 01107
Author(s):  
Y. Kamala Raju ◽  
G.V.V. Satyanarayana ◽  
G. Arun Sai

The present decade, high rise multi-storey buildings are subjected to many external effects such as earthquake, wind loads, tidal loads, etc., in most cases high rise buildings have more vulnerable to earthquake and wind loads. Most of the reinforced concrete multi-storeyed frame buildings were heavily damaged and many of them completely collapsed during due earthquakes. RC frame buildings were severely damaged due to various deficiencies when proper codal provisions are not designed. A study is need to study the behaviour of the RC framed structure under earthquake load to reduce the damage caused by earthquake forces In this investigation a RC framed building of G+20 storeyed is considered in several seismic zones under different soils as per Indian Standard code IS 1893(part1):2016, using STAAD. Pro V8i as software tool. Finally evaluate the ultimate Base shear using Equivalent static method and Response spectrum method addressing under design forces.

2019 ◽  
Vol 10 (2) ◽  
pp. 18-31
Author(s):  
Radhikesh Prasad Nanda ◽  
Subhrasmita Majumder

In the present article, the performance of base-isolated infilled frames is studied analytically. The seismic performances of four RC buildings, namely RC bare frame without isolator, RC bare frame with isolator, RC infilled frame without isolator, and RC infilled frame with isolator are analysed. The results show a decrease in base shear value and increase in time period due to base isolated buildings, while these parameters are reversely affected due to infills. The decrease in story drift for the base isolated buildings is in phase while considering infill. Also, it can be inferred that plastic hinge formation is greatly affected by the introduction of masonry infill. Hence, relying on base isolation without considering infills may underestimate the seismic performance.


Seismic analysis of structural systems with floor diaphragms has been a requisite in the recent past. The duty of a structural engineer is to be prudent about the behavior of every structural system adopted. Amongst the structural systems that are adopted world over, diaphragm with rigid and semi-rigid floor plate are adopted widely in the analysis. This research focuses on the backstay effect i.e. podium structural interaction with the tower area and consideration of retaining wall as increment of lateral stiffness as specified in latest tall building code IS6700:2016 for low and high rise structures. In the current study models were prepared with low to high rise storeys with rigid and flexible diaphragms considering backstay diaphragm placing tower at center and corner. The models were subjected to seismic forces; response spectrum along with the combination of the gravity loads. The structural responses like natural periods, base shear, displacement and inter storey drift were also studied.


2020 ◽  
Vol 6 (4) ◽  
pp. 204
Author(s):  
Anas M. Fares

In this study, the influence of soil condition under the isolated and fixed bases is studied by using ETABS 16 software for the high-rise regular building. A regular building with 10 floors is modeled and the results are obtained for story displacements, story shear forces and spectral acceleration according to Uniform Building Code 97 (UBC-97) code. The time history analysis has been performed by using 1999 Izmit earthquake record. 3 types of soil which had different stiffnesses are considered in this study. The results show that the value of base shear increases when the soil stiffness decreases. It also noticed that the spectral acceleration is larger in soft soil condition than that of other soil conditions; and this confirms that the structural response spectrum is associated with the soil condition. In addition, when using base isolated building the drift of lower floors will be larger than that of using base isolated, but in the upper floors the drifts of fixed base building will be larger than that of the isolated base building. Finally, time history method in the seismic design will produce base shear less than that from equivalent static method, so calibration factor for design purpose shall be used.


2018 ◽  
Vol 203 ◽  
pp. 06014
Author(s):  
Zafarullah Nizamani ◽  
Seah Kay Seng ◽  
Akihiko Nakayama ◽  
Mohamad Shariff Bin Omar Khan ◽  
Haider Bilal

Most of the residential buildings in Malaysia are not designed to withstand the seismic forces, while the high-rise buildings. However, since the Sumatra 2004 earthquake, there had been increasing concerns about the structure vulnerability in our country to earthquakes. Several recent studies had also revealed that Malaysia had the possibility to be influenced by both local and far field earthquakes. This study is conducted to analyze the vulnerability of a high rise building to local and far field earthquakes using Scia Engineer. Modal Response Spectrum method of Scia Engineer is used. The model is a 12 story hotel building from Ipoh, Perak. The designing code is the Eurocode with Malaysia Annex. Different Peak Ground Accelerations (PGA) that represents the local and far field earthquakes is acted on the model to obtain the seismic performance. The deformation of the building by the seismic combinations is compared to the ASCE-7 design to evaluate the vulnerability. Research of seismic performance of the flat slab system is also conducted along with beam frame system. The result shows that the building is in a safe condition in terms of deformation and the seismic performance of the flat slab system is advantageous.


Author(s):  
Anurag Kumar Pandey

Abstract: In This I have studied the seismic response of various types of slab in commercial buildings and their seismic behavior is studied. As we know every year uncountable number of earthquakes occur at different places, that means, small movements of tectonic plates occur all the time causing earthquakes. A seismic resistant designed building can provide safety for more people. slabs and roofs needed more columns if we design seismic resistant design but at some places like airport, shopping mall, commercial building more column can create some problem. To overcome this problem seismic design of grid slab or waffle slabs was comes out. Grid /Waffle slab consists of Concrete beams spaced at uniform intervals in perpendicular directions which are monolithically casted with slab and they are more safe in earthquake situation as comparison of to normal conventional slab. Keywords: Grid Slab, Earthquake Load , Response Spectrum , Storey Drift, Storey Displacement , E-Tab 2018 , Base Shear, Time Period , Mode Shapes.


Author(s):  
Mr. Suryakant Pandey

Abstract: In this day and age of urbanization, there is a strong need for a large-scale high-rise apartment building in every city but high-rise construction systems are extremely difficult to construct in any seismic region due to the intense and disruptive nature of seismic forces. Seismic forces have the highest risk of causing the most harm to high-rise buildings. To meet this need, the Civil Engineering industry is constantly developing new groundbreaking techniques. To solve this problem RCC or steel bracings are provided in high-rise buildings which help to the low down the effect of seismic and wind forces. The main objective of this paper is to locate an effective position and pattern of the RCC X-bracing system in the L- shape multi-storey building which is subjected to seismic forces. According to a previous reference paper, X-bracing produces better results than other bracing systems. Analysis the seven types of frame models are taken – (1) Normal L-shape building without bracing, (2) Xbracing are provided at the face of L-shape building, (3) X-bracing are provided alternative pattern at the face of L-shape building from bottom to top floor, (4) X- bracing are provided zig-zag pattern at the face of L-shape building, (5) X-bracing are provided at the corner of L-shape building, (6) X-bracing are provided alternative pattern at the corner of L-shape building from bottom to the top floor, (7) X-bracing are provided zig-zag pattern at the corner of L-shape building. Developed and evaluated by response spectrum analysis method (Linear dynamic analysis) as per IS 1893-2000 using STAAD PRO V8i. In the present work G+12 storey, the L-shape frame structure is analyzed by using X-bracing. It is analyzed and the results of the Following Parameters are taken - (1) Peak storey shear, (2) Base shear, (3) Nodal displacement, (4) Maximum bending moment, (5) Total quantity of steel in the whole structure, (6) Total volume of concrete in the whole structure are evaluated and compared. Keywords: RCC Bracing, Seismic Behavior, Seismic Analysis, Peak Storey Shear, Base shear, Nodal Displacements, Maximum Bending Moment, The Total Quantity of Steel, The Total Volume of Concrete


2010 ◽  
Vol 163-167 ◽  
pp. 3981-3986
Author(s):  
Mohammad Saeed Masoomi ◽  
Siti Aminah Osman ◽  
Shahed Shojaeipour

This paper presents the nonlinear time-history and response spectrum analysis for a three-story steel moment frame and a braced frame by hysteretic damper against earthquake load which analyzed by SAP2000 software. The mentioned frames were analyzed by Eigenvalue method for linear analysis and Ritz-vector method for nonlinear analysis. Simulation results were presented as a time-displacement graph based on dynamic analysis, the dynamic base shear force is also calculated.


1992 ◽  
Vol 19 (4) ◽  
pp. 688-710 ◽  
Author(s):  
T. J. Zhu ◽  
W. K. Tso ◽  
A. C. Heidebrecht

Seismic areas in Canada are classified into three categories for three different combinations of acceleration and velocity seismic zones (Za < Zv, Za = Zv, and Za > Zv), and ground motions in different zonal combination areas are expected to have different frequency characteristics. The National Building Code of Canada specifies different levels of seismic design base shear for short-period buildings located in areas with different zonal combinations. The specification of seismic design base shear for long-period buildings is directly tied to zonal velocity, irrespective of seismic zonal combination. This paper evaluates the seismic performance of both high-rise long-period and low rise short-period reinforced concrete ductile moment-resisting frame buildings located in seismic regions having Za < Zv, Za = Zv, and Za > Zv. Two frame buildings have 10 and 18 storeys were used as structural models for high-rise buildings, while a set of four-storey buildings were used to represent low-rise buildings. All buildings were designed to the current Canadian seismic provisions and concrete material code. Three groups of earthquake records were selected as representative ground motions in the three zonal combination regions. The inelastic responses of the designed buildings to the three groups of ground motions were analyzed statistically. The results indicate that the distribution of inelastic deformations is significantly different for high-rise frame buildings situated in seismic regions with Za < Zv, Za = Zv, and Za > Zv. Inelastic deformation is concentrated in the lower storeys for high-rise buildings located in Za < Zv areas, whereas significant inelastic deformation can develop in the upper storeys for high-rise buildings situated in Za > Zv regions. The use of three different levels of seismic design base shear for short-period structures improves the consistency of ductility demands on low-rise buildings situated in the three different zonal combination regions. Despite the use of appropriate design base shears for different seismic regions, the ductility demands for these low-rise buildings are relatively high. To avoid excessive ductility demands, it is suggested that the seismic strengths for low-rise short-period buildings should not be significantly reduced from their elastic design base shears. Key words: earthquake, ground motion, seismic, design, reinforced concrete, frame buildings, beams, columns, ductility.


Author(s):  
Roy O. Ononye ◽  
Kevin C. Okolie ◽  
F. O. Ezeokoli ◽  
S. C. Ugochukwu

The importance of wind induced vibration is a key factor in the analysis, design and construction of high-rise building structures. Owing to scarce land resources, urbanization and ever-growing demand for accommodation is leading developers into sloping (hilly) grounds which in turn requires researches on the structural equilibrium of these structures. This study draws to mind the requirements of a fast-growing city of the Federal Capital Territory, FCT, Abuja considering her vast undulating planes and plateaus, high altitudes and windspeeds (50 m/s). Here therein, lies a comparative study of different types of building configurations and responses for sloping grounds using approaches form seismic analyses as a background to achieving set objectives. The study therefore, attempts the application of a commonly used method (Static Wind Analysis, SWA) for analysis of wind loads on structures and also understudying the outcomes of applying the same loads using dynamic method (Response Spectrum Analysis, RSA). STAAD Pro V8i software was used to synthesize both analyses using the ASCE 705 code (wind speed-up over Hills) on 40 models for each analysis method for a 3x5 planar building configurations (G+6, G+8, G+12 and G+18) on grounds (0°, 6°, 14°, 18°, and 27°). The findings confirmed the complexities of sloping ground buildings with a greater chance of vibration and sway for SWA than in RSA. It was concluded, that the Stepback-setback (STPB-SETB) frames were better configured to combat wind loads on sloping grounds for both analyses. Recommendations includes, prioritizing the construction industry, collaboration with international bodies on High-rise development, developing a data base and wind testing facilities.


1994 ◽  
Vol 59 (455) ◽  
pp. 157-166
Author(s):  
Hiroyasu SAKATA ◽  
Kazushi SHIMAZAKI ◽  
Koichi YATSUSHIGE ◽  
Akira WADA

Sign in / Sign up

Export Citation Format

Share Document