scholarly journals A METHOD TO EVALUATE THE SHEAR STRENGTH OF MULTI-STORY PRECAST CONCRETE STRUCTURAL WALLS

Author(s):  
Toshio MATSUMOTO ◽  
Hiroshi NISHIHARA ◽  
Masato FURUTANI ◽  
Tomoyoshi TAKEDA ◽  
Hiroshi IMAI
2021 ◽  
Vol 11 (2) ◽  
pp. 506
Author(s):  
Sun-Jin Han ◽  
Inwook Heo ◽  
Jae-Hyun Kim ◽  
Kang Su Kim ◽  
Young-Hun Oh

In this study, experiments and numerical analyses were carried out to examine the flexural and shear performance of a double composite wall (DCW) manufactured using a precast concrete (PC) method. One flexural specimen and three shear specimens were fabricated, and the effect of the bolts used for the assembly of the PC panels on the shear strength of the DCW was investigated. The failure mode, flexural and shear behavior, and composite behavior of the PC panel and cast-in-place (CIP) concrete were analyzed in detail, and the behavioral characteristics of the DCW were clearly identified by comparing the results of tests with those obtained from a non-linear flexural analysis and finite element analysis. Based on the test and analysis results, this study proposed a practical equation for reasonably estimating the shear strength of a DCW section composed of PC, CIP concrete, and bolts utilizing the current code equations.


2021 ◽  
Vol 33 (6) ◽  
pp. 609-618
Author(s):  
Joo-Hyun Jin ◽  
Hong-Gun Park ◽  
Chul-Goo Kim

2019 ◽  
Vol 22 (11) ◽  
pp. 2392-2405 ◽  
Author(s):  
Jiaxing Ma ◽  
Bing Li

Peak shear strength is a critical parameter in the evaluation of the seismic performance of structural walls. Different equations have been proposed to predict the peak shear strength of reinforced concrete squat walls in literature, which assume lateral loading is parallel to the web. In reality, however, seismic waves can reach structures from any direction, which necessitates the studies on the behavior of structural walls under various lateral loading directions. Unlike rectangular walls, non-rectangular walls naturally possess the capacity to resist lateral loads in both transverse and longitudinal directions. To explore the peak shear strength of such walls under different lateral loading directions, a widely used nonlinear finite element software Diana 9.4 was utilized in this article. Appropriate modeling approaches were first selected and further validated by simulating relevant experiments. Then a comprehensive parametric study was carried out to investigate the influence of lateral loading directions and other important parameters.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Xinlei Yang ◽  
Hanchen Wu ◽  
Jianxin Zhang ◽  
Hailiang Wang

In order to improve the shear behavior of hollow concrete block masonry, precast concrete anti-shear blocks were proposed to enhance the shear strength of hollow concrete block masonry. Four groups of hollow concrete block masonry triplets with precast concrete anti-shear blocks were tested under shear loading, and their behaviors were compared with a control group. The results show that as the height of precast concrete anti-shear blocks increases, the shear strength of the masonry increases. The maximum shear strength of masonry triplets with precast concrete anti-shear blocks was 234.48 percent higher than that of the control specimens. The shear strength of masonry triplets was mainly determined by the failure of hollow concrete block unit. The majority of specimens exhibited double shear failures; however, these failures showed characteristics of ductile failure to a certain extent. Based on the experimental results, a equation for calculating the shear strength of masonry with precast concrete anti-shear blocks was proposed.


2013 ◽  
Vol 25 (2) ◽  
pp. 175-185 ◽  
Author(s):  
Chul-Goo Kim ◽  
Hong-Gun Park ◽  
Geon-Ho Hong ◽  
Su-Min Kang

Sign in / Sign up

Export Citation Format

Share Document