scholarly journals ELASTO PLASTIC BEHAVIOR OF PANEL ZONE OF STEEL BEAM TO CONCRETE-FILLED CIRCULAR STEEL TUBULAR COLUMN CONNECTION

Author(s):  
Toshiyuki FUKUMOTO
2020 ◽  
Vol 1 (1) ◽  
pp. 13-15
Author(s):  
Tran Tuan Nam

Beam-to-column panel zone behavior in a steel moment-frame is characterized by the surrounding acting forces and its rotating deformation. When subjected to lateral forces, panel zones are deformed in a parallelogram pattern that one side of its diagonal direction is in tension whereas the other side is in compression. Moreover, right angles at the joints between the beam, column ends and the panel remains right angles. Shear strain causes the panel to rotate at a finite angle characterizing its rotating deformation. Based on experimental results from a full scale steel building collapse test, this paper discusses the elastic and elasto-plastic behavior of some typical panel zones.


2011 ◽  
Vol 243-249 ◽  
pp. 1168-1172
Author(s):  
Yuan Huang ◽  
Wei Jian Yi ◽  
Jian Guo Nie

Nonlinear finite element (FE) analysis models of CFT composite frames with floor slab were established by Msc.Marc to investigate the seismic behavior of composite frames. A number of material nonlinearities and contact nonlinearities, as well as geometry nonlinearities, were taken into account, including elastoplastic properties of steel and concrete, concrete cracking and tension stiffening, steel fracture, interface slip between concrete slabs and steel beams, P-D effects etc. The elasto-plastic behavior, as well as fracture and post-fracture behavior, of the FE analysis models agreed well with those of the test specimens. The beam and panel zone deformation of the analysis models is also in good agreement with that of the test specimen. It is concluded that FE analysis is useful not only for monotonic load analysis but also for cyclic load analysis. It is a helpful tool to expand the information on seismic behavior of composite frame.


2020 ◽  
Vol 13 (1) ◽  
pp. 22-29
Author(s):  
Atsushi Sato ◽  
Yohei Koyama ◽  
Hideki Idota ◽  
Yuki Sato ◽  
Shigeharu Yagi ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document