scholarly journals STUDY ON SEISMIC BEHAVIOR OF STEEL BEAM-TO-COLUMN PANEL ZONES

2020 ◽  
Vol 1 (1) ◽  
pp. 13-15
Author(s):  
Tran Tuan Nam

Beam-to-column panel zone behavior in a steel moment-frame is characterized by the surrounding acting forces and its rotating deformation. When subjected to lateral forces, panel zones are deformed in a parallelogram pattern that one side of its diagonal direction is in tension whereas the other side is in compression. Moreover, right angles at the joints between the beam, column ends and the panel remains right angles. Shear strain causes the panel to rotate at a finite angle characterizing its rotating deformation. Based on experimental results from a full scale steel building collapse test, this paper discusses the elastic and elasto-plastic behavior of some typical panel zones.

2019 ◽  
Vol 15 (2) ◽  
pp. 142-153
Author(s):  
Ahmadreza Khodabandehlo ◽  
Mohamad Taghi Kazemi

AbstractWith spreading of population and increasing of instruction, and also because of limited resources and materials, the demand for using novel materials in building industry has increased. The reinforced concrete columns and steel beams are used in structures with composite moment frame (RCS). Use of compression strength in proportion with concrete and bending strength of steel beam has bestowed these structures less weight than that of concrete structures and made it easier to access the measure of strong column - weak beam especially within long span in these structures. The most important part of these structures is connection of steel beam with the reinforced concrete column. These connections are divided into two general groups of connection with bracing beam and with bracing column from the joint. This paper aims to study the seismic behavior and parameters of RCS composite frame composed of steel beams and strong concrete column. The finite element method was analyzed by ABAQUS software and data analyzed by Excel.


2011 ◽  
Vol 243-249 ◽  
pp. 1168-1172
Author(s):  
Yuan Huang ◽  
Wei Jian Yi ◽  
Jian Guo Nie

Nonlinear finite element (FE) analysis models of CFT composite frames with floor slab were established by Msc.Marc to investigate the seismic behavior of composite frames. A number of material nonlinearities and contact nonlinearities, as well as geometry nonlinearities, were taken into account, including elastoplastic properties of steel and concrete, concrete cracking and tension stiffening, steel fracture, interface slip between concrete slabs and steel beams, P-D effects etc. The elasto-plastic behavior, as well as fracture and post-fracture behavior, of the FE analysis models agreed well with those of the test specimens. The beam and panel zone deformation of the analysis models is also in good agreement with that of the test specimen. It is concluded that FE analysis is useful not only for monotonic load analysis but also for cyclic load analysis. It is a helpful tool to expand the information on seismic behavior of composite frame.


2011 ◽  
Vol 368-373 ◽  
pp. 1217-1221
Author(s):  
Yan Xia Zhang ◽  
Yun Peng Li ◽  
Lu Yao Wang ◽  
Fan Yang

Based on the previous experiments and theoretical analyses, finite element analyses (FEA) and parametric study on seismic behavior of Cover Plate Strengthen-Beam Flange Weaken Beam-to-Column (CPSBFW) connection are executed by using ABAQUS. Suggestions on design conceptions and details of the cover plate strengthen-beam flange weaken beam-to-column connection are presented in this paper, and that provide valuable reference for design of beam-to-column connections in steel structures.


2016 ◽  
Vol 16 (02) ◽  
pp. 1450095 ◽  
Author(s):  
Yongtao Bai ◽  
Guoliang Bai

This paper presents a series of pseudo-dynamic tests (PDTs) and quasi-static tests (QSTs) on a dual wing-walled frame system, represented here by a 1/7-scaled composite moment frame with steel reinforced concrete (SRC) columns and reinforced concrete (RC) wing walls. Special characteristics of this scaled system are irregular story layout, strong-beam weak-column mechanism and large axial load. A series of scaled El-Centro (NS) waves were used as the input ground motion for the PDTs, the results of which showed that the seismic behavior was significantly improved by the RC wing walls. With the strong-beam weak-column connections, severe damages sustained by the longitudinal wing walls (LWW) prevented the potential collapse of column, and the transverse wing wall (TWW) efficiently avoided the fragile shear failure of short columns and panel zone of beam-column joints. The failure mechanisms were identified indicating that wing walls improved the ductility for the bare frame. This study provides a solid experimental support on the evaluation of seismic behavior of irregular SRC frames with RC wing walls, which could be applied in the main factory buildings of thermal power plants (TPP).


2018 ◽  
Vol 763 ◽  
pp. 400-405
Author(s):  
Ali A. Rad ◽  
Gregory A. MacRae ◽  
Nikoo K. Hazaveh ◽  
Quincy T. Ma

The paper describes the shaking table performance of a half-scale two-story steel moment frame with asymmetric friction connections (AFCs) at the column bases and at the beam ends. The results showed that the beam ends and the base-column joints exhibited bilinear and trilinear response respectively. Residual drifts were less than 0.2% for shake table trials up to 3% peak inter-story drift. Even at a peak inter-story drift of 6.5%, the residual drift response was still only 0.7%.


Sign in / Sign up

Export Citation Format

Share Document