scholarly journals FUNDAMENTAL CHARACTERISTICS ON SEISMIC EFFECT TO PILE FOUNDATION BY SHAKING TABLE TEST FOR MODEL OF BUILDING-SOIL INTERACTION SYSTEM

Author(s):  
Masanori IIBA ◽  
Shin'ichiro TAMORI ◽  
Yoshikazu KITAGAWA
2012 ◽  
Vol 238 ◽  
pp. 337-340 ◽  
Author(s):  
Yu Run Li ◽  
Yan Liang ◽  
Xing Wei ◽  
Yun Long Wang ◽  
Zhen Zhong Cao

The study on lateral dynamic response of pile foundation in liquefiable soil is a significant part about seismic damage. In this paper, a new data acquisition system of FBG and calculation methods is used in the small shaking table test. The results show that FBG method used in this test is proved to be efficient and acceptable in both time characteristics and precision characteristics, it may be widely applied in the future doubtlessly. What’s more, the characteristics of p-y curves in different peak accelerations are discussed. And varying of maximum stress and displacement by corresponding acceleration is discussed. A contrast about p-y curve between dry sand and saturate sand is related, which provides a new direction in research about p-y curve.


2019 ◽  
Vol 2019 ◽  
pp. 1-16 ◽  
Author(s):  
Yunxiu Dong ◽  
Zhongju Feng ◽  
Jingbin He ◽  
Huiyun Chen ◽  
Guan Jiang ◽  
...  

Puqian Bridge is located in a quake-prone area in an 8-degree seismic fortification intensity zone, and the design of the peak ground motion is the highest grade worldwide. Nevertheless, the seismic design of the pile foundation has not been evaluated with regard to earthquake damage and the seismic issues of the pile foundation are particularly noticeable. We conducted a large-scale shaking table test (STT) to determine the dynamic characteristic of the bridge pile foundation. An artificial mass model was used to determine the mechanism of the bridge pile-soil interaction, and the peak ground acceleration range of 0.15 g–0.60 g (g is gravity acceleration) was selected as the input seismic intensity. The results indicated that the peak acceleration decreased from the top to the bottom of the bridge pile and the acceleration amplification factor decreased with the increase in seismic intensity. When the seismic intensity is greater than 0.50 g, the acceleration amplification factor at the top of the pile stabilizes at 1.32. The bedrock surface had a relatively small influence on the amplification of the seismic wave, whereas the overburden had a marked influence on the amplification of the seismic wave and filtering effect. Damage to the pile foundation was observed at 0.50 g seismic intensity. When the seismic intensity was greater than 0.50 g, the fundamental frequency of the pile foundation decreased slowly and tended to stabilize at 0.87 Hz. The bending moment was larger at the junction of the pile and cap, the soft-hard soil interface, and the bedrock surface, where cracks easily occurred. These positions should be focused on during the design of pile foundations in meizoseismal areas.


2012 ◽  
Vol 52 (6) ◽  
pp. 1043-1061 ◽  
Author(s):  
Xiaohua Bao ◽  
Yukihiro Morikawa ◽  
Yoshimitsu Kondo ◽  
Keisuke Nakamura ◽  
Feng Zhang

2018 ◽  
Vol 83 (749) ◽  
pp. 985-995 ◽  
Author(s):  
Masatoshi YAMAZOE ◽  
Koichi KUSUNOKI ◽  
Yuji SAKO ◽  
Hajime OKANO ◽  
Yo HIBINO ◽  
...  

2016 ◽  
Vol 10 (02) ◽  
pp. 1640005 ◽  
Author(s):  
Shuang Xing ◽  
Miyamoto Yuji

This paper focuses on the influence of frozen soil on seismic response of a building supported by pile foundation. Firstly, the saturated sand soil is frozen artificially, and then shaking table tests are conducted. Specifically, seismic responses of buildings with different natural frequencies and with different freezing depths of the saturated soil are investigated, respectively. In this study, it is confirmed that for buildings with high rigidity, the effect of interaction becomes smaller when the soil is frozen. Moreover, it is observed that the resonant frequency of frozen ground is closer to the natural frequency of superstructure, and thus the response of the superstructure becomes larger. It is also observed that the bending moment along the pile is remarkably reduced by improving the rigidity of the soil.


Sign in / Sign up

Export Citation Format

Share Document