scholarly journals POZZOLANIC REACTION AND STRENGTH DEVELOPMENT OF CEMENT PASTE AND MORTAR USING FLY ASH

Author(s):  
Fu Rong WU ◽  
Yoshihiro MASUDA ◽  
Hisashi SUGIYAMA
2013 ◽  
Vol 405-408 ◽  
pp. 2665-2670 ◽  
Author(s):  
Ming Jie Mao ◽  
Qiu Ning Yang ◽  
Wen Bo Zhang ◽  
Isamu Yoshitake

Fly-ash concrete used in massive concrete structure has superior advantages to reduce hydration heat. On the other hand, the fly-ash concrete has negative property of low strength development at early age because pozzolanic reaction of fly-ash activates at mature age, such as after 28 days. To investigate these characteristics of fly-ash used in concrete, the present study discusses thermal cracking possibility of fly-ash concrete by using FE analysis software. The present study employs prediction formulae proposed by Zhang and Japanese design code in the simulations. The objects in this study are normal strength concrete mixed of fly-ash up to 50% of replacement ratio to cement. The comparative investigations show that temperature effect is more significant than strength development at early age. Based on the analytical study, high volume fly-ash concretes of 30-50% of the replacement ratio can be concluded as effective and useful materials to reduce the cracking possibility in massive concrete structures. Keywords-Fly-ash concrete; Early Age, Prediction Formulae for Strength; Thermal Stress Analysis


2015 ◽  
Vol 94 ◽  
pp. 28-34 ◽  
Author(s):  
Phuong Trinh Bui ◽  
Yuko Ogawa ◽  
Kenichiro Nakarai ◽  
Kenji Kawai

2015 ◽  
Vol 49 (8) ◽  
pp. 3039-3053 ◽  
Author(s):  
Phuong Trinh Bui ◽  
Yuko Ogawa ◽  
Kenichiro Nakarai ◽  
Kenji Kawai

2021 ◽  
Vol 47 (1) ◽  
pp. 70-81
Author(s):  
Tebogo Mashifana ◽  
Felix Okonta ◽  
Freeman Ntuli

Waste phosphogypsum (PG) was treated with citric acid, oxalic acid, sodium carbonate and sodium bicarbonate to reduce the contaminants in the material and render the material applicable for other applications. The chemical composition revealed that the material was laden with contaminants such as fluorides and phosphorous which have a detrimental effect on the development of material strength. Citric acid was the best leaching reagent to reduce the radionuclides in PG and it was selected as the leaching reagent to treat PG. The chemical composition of both the raw PG and treated PG showed that there was insufficient pozzolans in the materials to trigger the pozzolanic reaction for strength development. Therefore the PG had to be stabilized with fly ash and lime. The optimum mix ratio of the raw PG composite that yielded the highest UCS was made up of 50% raw PG and 30% FA, while 30% treated PG and 50% FA yielded the highest strength. The variation in strengths between the raw and treated PG was due to differences in the microstructure of the materials and the particle size distribution. The strength obtained met the minimum requirements for the material to be used in bulk as building construction elements.


1988 ◽  
Vol 136 ◽  
Author(s):  
Sidney Diamond ◽  
Qizhong Sheng ◽  
Jan Olek

ABSTRACTStrengths developed in fly ash concretes usually equal or exceed that of similar plain concrete after a few months, with much of the response usually attributed to “pozzolanic” reaction between ash and secondary calcium hydroxide (CH). The CH contents of pastes made with five different fly ashes were determined by DTA for periods up to six months. The CH contents found did not decrease notably over the period, and were substantially identical to that expected for plain cement pastes diluted with the same amount of inert material as the amount of fly ash used. Scanning electron microscope examination of the pastes showed only minimal evidence of reaction even up to 1 year of age, although many fly ash grains were in intimate contact with CH. Non-evaporable water contents of the fly ash pastes were substantially higher than expected at each age, suggesting that the fly ash promoted more complete cement hydration or that the hydration products formed bound substantially greater amounts of water than plain cement paste ordinarily does.


1988 ◽  
Vol 137 ◽  
Author(s):  
Sidney Diamond ◽  
Qizhong Sheng ◽  
Jan Olek

AbstractStrengths developed in fly ash concretes usually equal or exceed that of similar plain concrete after a few months, with much of the response usually attributed to “pozzolanic” reaction between ash and secondary calcium hydroxide (CH). The CH contents of pastes made with five different fly ashes were determined by DTA for periods up to six months. The CH contents found did not decrease notably over the period, and were substantially identical to that expected for plain cement pastes diluted with the same amount of inert material as the amount of fly ash used. Scanning electron microscope examination of the pastes showed only minimal evidence of reaction even up to 1 year of age, although many fly ash grains were in intimate contact with CH. Non-evaporable water contents of the fly ash pastes were substantially higher than expected at each age, suggesting that the fly ash promoted more complete cement hydration or that the hydration products formed bound substantially greater amounts of water than plain cement paste ordinarily does.


Sign in / Sign up

Export Citation Format

Share Document