scholarly journals STUDY ON FIRE RESISTANCE OF REINFORCED CONCRETE SLAB UNDER THE NEGATIVE BENDING MOMENT

2009 ◽  
Vol 74 (639) ◽  
pp. 971-980
Author(s):  
Toshihiko NISHIMURA
2015 ◽  
Vol 8 (2) ◽  
pp. 164-195
Author(s):  
N. G. B. Albuquerque ◽  
G. S. S. A. Melo

Although several advantages - either constructive or architectural - are assigned to flat slabs, the continuity between consecutive spans in multifloor buildings may turn slab-column connections into a critical region, due to the limited contact between both elements. When transferring moments caused by horizontal and/or vertical eccentric loads are present, these effects are even more pronounced on external panels. Specific studies on the effects of outward eccentricities are still rather scarce, although it is recognized that the codes, in general, are concerned with eventually meeting all potential cases, seeking to improve safety structural performance. Some current recommendations are based on considerable extrapolations, whose theory was originally developed for cases of asymmetric loading at internal connections and need to be consolidated with specific test data. Thus, to investigate the structural behaviour of slabs-edge columns connections, four specimens were tested, reproducing a 2,350 mm x 1,700 mm portion of a 180 mm thick reinforced concrete slab adjacent to a 300 mm x 300 mm cross section squared edge column, with a projection at the base for the imposition of eccentricities. The position of the support under the column has determined the eccentricity, defining in physical terms the interaction between bending moment and shear force, as follows: 300 mm (inward), centred (reference) and 300 mm and 400 mm (outward). Experimental results allowed to comparatively assess the performance of the specimens relating the strain measurements in steel and concrete, vertical displacements, rotations, failure mode and ultimate loads of the slabs. Results indicate that the influence of transferring moments on failure modes is much more pronounced than the shear action in the case of edge connections subjected to outward eccentricities.


2017 ◽  
Vol 116 ◽  
pp. 02018 ◽  
Author(s):  
Oleg Kalmykov ◽  
Ludmila Gaponova ◽  
Petro Reznik ◽  
Sergey Grebenchuk

2021 ◽  
pp. 788-800
Author(s):  
António P. C. Duarte ◽  
Inês C. Rosa ◽  
Mário R. T. Arruda ◽  
João P. Firmo ◽  
João R. Correia

Author(s):  
Ralph Alan Dusseau

The results of a study funded by the U.S. Geological Survey as part of the National Earthquake Hazards Reduction Program are presented. The first objective of this study was the development of a database for all 211 highway bridges along I-55 in the New Madrid region of southeastern Missouri. Profiles for five key dimension parameters (which are stored in the database) were developed, and the results for concrete highway bridges are presented. The second objective was to perform field ambient vibration analyses on 25 typical highway bridge spans along the I-55 corridor to determine the fundamental vertical and lateral frequencies of the bridge spans measured. These 25 spans included six reinforced concrete slab spans and two reinforced concrete box-girder spans. The third objective was to use these bridge frequency results in conjunction with the dimension parameters stored in the database to develop empirical formulas for estimating bridge fundamental natural frequencies. These formulas were applied to all 211 Interstate highway bridges in southeastern Missouri. Profiles for both fundamental vertical and lateral frequencies were then developed, and the results for concrete highway bridges are presented.


Sign in / Sign up

Export Citation Format

Share Document