scholarly journals Study of fire-resistance of reinforced concrete slab of a new type

2017 ◽  
Vol 116 ◽  
pp. 02018 ◽  
Author(s):  
Oleg Kalmykov ◽  
Ludmila Gaponova ◽  
Petro Reznik ◽  
Sergey Grebenchuk
2020 ◽  
Vol 23 (1) ◽  
pp. 1-11
Author(s):  
Ali H. Yaagoob ◽  
Ibrahem S. Harba

Reinforced concrete slab with plastic voids (Bubbled Deck system) is a new type of slabs which has two-dimensional arrangement of voids within the slab that is developed to decrease the slab self-weight while maintaining approximately the same load carrying capacity as compared with the solid slabs. Plastic voided slabs have the ability to reduce concrete amount by about 30 percent and this reduction is so important in terms of cost saving and enhancement the structural performance. In this research paper investigation is carried out to study the shear strength behavior of one-way bubble deck slab using self-compacting reinforced concrete. The experimental program consists of testing thirteen one-way slabs with dimensions of (1700 length, 700 width and 150 thick) mm. One of the tested slabs is a solid slab (without balls) is used as a reference, the remaining twelve bubbled slabs with ball diameter (73, 60) mm are divided into five groups according to the parameters of the experimental work, the parameters of the experimental work include: type of slab (bubble and solid slabs), ball diameter (73, 60) mm, shear reinforcement and spacing between balls. The experimental results showed that the bubbled slabs without shear reinforcement have a decrease in the ultimate load as compared to solid slab by about 3.7% to 14.3% and an increase in the deflection at ultimate load by about 10% to 22%, at the same time the first crack load decreases by about 15.3% to 42.4% as compared to solid slab due to decreases of moment of inertia of bubble slab compared to solid slab. Also, the results showed that the bubbled slabs withe shear reinforcement (multi-leg) have an increase in the ultimate load as compared to solid slab by about 35.4% to 57.3% and an increase in the deflection at ultimate load by about 1% to 15%, at the same time the first crack load decreases by about 2.8% to 27.4% as compared to solid slab.


2021 ◽  
pp. 788-800
Author(s):  
António P. C. Duarte ◽  
Inês C. Rosa ◽  
Mário R. T. Arruda ◽  
João P. Firmo ◽  
João R. Correia

Author(s):  
Ralph Alan Dusseau

The results of a study funded by the U.S. Geological Survey as part of the National Earthquake Hazards Reduction Program are presented. The first objective of this study was the development of a database for all 211 highway bridges along I-55 in the New Madrid region of southeastern Missouri. Profiles for five key dimension parameters (which are stored in the database) were developed, and the results for concrete highway bridges are presented. The second objective was to perform field ambient vibration analyses on 25 typical highway bridge spans along the I-55 corridor to determine the fundamental vertical and lateral frequencies of the bridge spans measured. These 25 spans included six reinforced concrete slab spans and two reinforced concrete box-girder spans. The third objective was to use these bridge frequency results in conjunction with the dimension parameters stored in the database to develop empirical formulas for estimating bridge fundamental natural frequencies. These formulas were applied to all 211 Interstate highway bridges in southeastern Missouri. Profiles for both fundamental vertical and lateral frequencies were then developed, and the results for concrete highway bridges are presented.


1985 ◽  
Vol 50 ◽  
Author(s):  
A. Atkinson ◽  
D. J. Goult ◽  
J. A. Hearne

AbstractA preliminary assessment of the long-term durability of concrete in a repository sited in clay is presented. The assessment is based on recorded experience of concrete structures and both field and laboratory studies. It is also supported by results of the examination of a concrete sample which had been buried in clay for 43 years.The enoineering lifetime of a 1 m thick reinforced concrete slab, with one face in contact with clay, and the way in which pH in the repository as a whole is likely to vary with time have both been estimated from available data. The estimates indicate that engineering lifetimes of about 103 years are expected (providing that sulphate resisting cement is used) and that pH is likely to remain above 10.5 for about 106 years.


Sign in / Sign up

Export Citation Format

Share Document