relative stiffness
Recently Published Documents


TOTAL DOCUMENTS

82
(FIVE YEARS 12)

H-INDEX

10
(FIVE YEARS 0)

2021 ◽  
Vol 2021 (4) ◽  
pp. 469-479
Author(s):  
Alexey F. KOLOS ◽  
◽  
Ksenia I. IVANOVA ◽  

Objective: Experimental determination track modulus and the coeffi cient of relative stiffness of underrail base and the rail, which are the main elastic characteristics that determine the stresses in the structural elements of track superstructure under the impact force from the train. The values of these parameters for a track with a ballast layer are well studied, in contrast to a ballastless track. Comparison of the elastic characteristics of a ballastless railway track with analogs of a track on ballast, as well as an assessment of their effect on the stress-strain state of the superstructure elements of a ballastless track. Methods: When carrying out full-scale tests, strain-gauge methods for measuring stresses in the elements of the track superstructure were used. The obtained values were processed by the methods of mathematical statistics. One statistical series included the values of stresses corresponding to one type of rolling stock, fi xed axle load and train speed, changing by no more than 10 km/h. The probability level in processing the results was taken in all cases equal to 0,994. Results: The values of track modulus and the coeffi cient of the relative stiffness of the underrail base and the rail were obtained for a ballastless structure of the RHEDA 2000 type. Practical importance: The results allow us to consider the rail as a beam lying on a solid elastic foundation in relation to the ballastless track and use the existing calculation methods for the design of ballastless track structures depending on the operating conditions.


2021 ◽  
Vol 11 (21) ◽  
pp. 10343
Author(s):  
Liguo Jin ◽  
Xujin Liu ◽  
Hongyang Sun ◽  
Zhenghua Zhou

The interaction between subway tunnels is investigated by using a 2D analytic model of a twin tunnels system embedded in a homogenous half-space. The closed-form analytical solution for tunnel displacement response is derived through the wave function expansion method and the mirror method, and the correctness of the solution is verified through residuals convergence and comparison with the published results. The analysis focuses on the effects of tunnel relative stiffness on tunnel–soil–tunnel interaction. Tunnel relative stiffness has a great influence on tunnel displacement response. For small tunnel relative stiffness, tunnel displacement amplitude can be enlarged by 3.3 times that of single rigid tunnel model. The response of the tunnel–soil–tunnel interaction system depends not only on the distances between tunnels but also on the frequency of the incident wave and the incident angle. The strength of the interaction between the tunnels is highly related to the tunnel spacing distance. The smaller the distance between tunnels, the stronger the interaction between them. When the distance between tunnels reaches s/a = 20, the interaction between tunnels can be ignored. It is worth pointing out that the seismic design of underground tunnels should consider the interaction between tunnels when the tunnel distance is small.


2021 ◽  
pp. 107754632110381
Author(s):  
Zhuangpeng Yi ◽  
Quan Pan ◽  
Donghuang Yan ◽  
Youyi Zeng

To analytically measure the vibratory characteristics of the cable-stayed bridge with beam-tower constraint during the dual-cantilever erection, the isolating/assembling technique is used to derive the global equation. Eigen-equation governing the frequencies/modes is obtained by applying the coefficients vectors transferring between adjacent cable-beams and the boundary/matching conditions. An illustrative example of the dual-cantilever erection system is given to verify the effectiveness of the analytical method by comparing with the finite element method. The influences of the vertical/rotational beam-tower constraint stiffness and the beam/cable relative stiffness on the frequencies/modes are studied; the sensitive interval and unstable/veering regions in frequency spectrum are ascertained. The twin frequencies are analytically measured and it is found that the symmetry plays a fundamental role in its existence and distribution range. The measuring method supplies reference for similar cable-supported structures; the results provide suggestions to avoid unstable/veering zone depending on the designed parameters combination in cable-stayed bridge.


Materials ◽  
2021 ◽  
Vol 14 (16) ◽  
pp. 4466
Author(s):  
Grzegorz Mieczkowski ◽  
Dariusz Szpica ◽  
Andrzej Borawski ◽  
Mohamed M. Awad ◽  
Ahmed Elgarayhi ◽  
...  

The article deals with the problem of a sharp corner, the tip of which is located on the bi-material interface. The paper presents a qualitative and quantitative description of singular stress fields occurring in the tip area of such a stress concentrator. The qualitative description was obtained by solving the problem of the plane theory of elasticity with appropriately defined boundary conditions. To obtain a quantitative description, it was necessary to determine the values of generalised stress intensity factors (GSIFs). The GSIFs were determined using the developed analytical-numerical method. The calculations were made for various load variants (uniaxial/biaxial tension load, shear load) and notch positions (single/double edge-notched plate, centre-notched plate). Additionally, the impact of notch geometry (height and opening angle) and relative stiffness (Young’s moduli ratio of both components of bi-material) on GSIFs was investigated. It has been noticed that with a decrease in the relative stiffness and an increase in the notch angle or its height, the normalised GSIFs values increased. The obtained results were compared with the data available in the literature and their satisfactory agreement with those presented by other scientists was found.


2021 ◽  
pp. 1-10
Author(s):  
Surangika Wadugodapitiya ◽  
Makoto Sakamoto ◽  
Sayaka Suzuki ◽  
Yusuke Morise ◽  
Koichi Kobayashi

BACKGROUND: The patellar and quadriceps tendons are responsible for the extension mechanism of the knee joint and frequently become inflamed during sports. Diagnosis and determination of when an athlete can return to sports following these injuries are usually performed by assessing morphological features and functional outcomes. Nevertheless, mechanical properties are not being assessed. OBJECTIVE: To describe the stiffness characteristics of these two tendons over the range of knee flexion and to test the feasibility of using strain ultrasound elastography (SE). METHODS: SE with an acoustic coupler as the reference was performed for nine healthy males. Relative stiffness measurements were obtained using the strain ratio (SR = target tissue strain/reference strain) by placing the knee in five different flexion angles. Lower SR indicates higher relative stiffness. RESULTS: This study showed reliable measurement with good intra- and inter-rater agreement for SR at 30°. SR of the quadriceps tendon decreases as knee flexion increases, indicating increased relative stiffness. In the patellar tendon, no significant difference was observed between 30° and 60°. Beyond 60°, relative stiffness increased constantly. CONCLUSIONS: SE is a reproducible and feasible tool to monitor relative stiffness of the patellar and quadriceps tendons in routine clinical settings.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Shicheng Sun ◽  
Chuanxin Rong ◽  
Houliang Wang ◽  
Linzhao Cui ◽  
Xin Shi

Shielding tunnel construction always has negative impacts on the surrounding buildings. Because of repeated disturbances caused by the construction, more attention should be paid to the impacts of the nonsynchronous construction of a twin-tunnel. In this research, a three-dimensional model was established to simulate the construction process of a twin-tunnel in a section of the Hefei No. 4 metro line, and the calculation results were validated with the measured settlement data. Based on the model, the ground settlement and the existing pipeline responses were studied in detail. The results showed that, after the first tunnel (FT) construction, the settlement curves conformed to a Gaussian distribution. Additionally, after the second tunnel (ST) construction, the final settlement curves were no longer completely symmetrical. The influences of the twin-tunnel space and the pipeline-soil relative stiffness on the settlements were further studied. The results showed that the final settlement curves of the ground surface and the pipeline were mainly W-shaped, U-shaped, and V-shaped. As the twin-tunnel space increased and the pipeline-soil relative stiffness decreased, the settlement curve gradually changed from V-shaped to W-shaped. C was defined as the ratio of two maximum settlements in the W-shaped settlement curve. As the space increased, C started to decrease from 1 and then increased to 1.


PLoS ONE ◽  
2021 ◽  
Vol 16 (1) ◽  
pp. e0244547
Author(s):  
Alexander Begun ◽  
Sergei Liubimov ◽  
Alexander Molochkov ◽  
Antti J. Niemi

We investigate aspects of topology in protein folding. For this we numerically simulate the temperature driven folding and unfolding of the slipknotted archaeal virus protein AFV3-109. Due to knottiness the (un)folding is a topological process, it engages the entire backbone in a collective fashion. Accordingly we introduce a topological approach to model the process. Our simulations reveal that the (un)folding of AFV3-109 slipknot proceeds through a folding intermediate that has the topology of a trefoil knot. We observe that the final slipknot causes a slight swelling of the folded AFV3-109 structure. We disclose the relative stability of the strands and helices during both the folding and unfolding processes. We confirm results from previous studies that pointed out that it can be very demanding to simulate the formation of knotty self-entanglement, and we explain how the problems are circumvented: The slipknotted AFV3-109 protein is a very slow folder with a topologically demanding pathway, which needs to be properly accounted for in a simulation description. When we either increase the relative stiffness of bending, or when we decrease the speed of ambient cooling, the rate of slipknot formation rapidly increases.


2020 ◽  
Author(s):  
Zuhair Kadhim Jahanger ◽  
S. J. Antony ◽  
Akash Hirani

2019 ◽  
Vol 2019 ◽  
pp. 1-20
Author(s):  
Bin Hu ◽  
Xiaoqing Li ◽  
Lifei Zheng

Uneven settlement widely occurs on the roadbed under urban viaducts in operation. Previous studies focused on the effect of soft soil foundation on the uneven settlement of roadbed, without considering the phenomenon and mechanism of uneven settlement at the junction of pier cap and the roadbed under viaduct. The interaction is now considered between the buried depth of cap, the relative stiffness between cap and road subgrade, and the uneven settlement of roadbed. Using the Midas GTS NX software, a numerical analysis model of the deformation of roadbed under viaduct is constructed to study the influence of viaduct cap foundation on the uneven settlement of roadbed under viaduct. The simulated results of uneven settlement of roadbed caused by urban viaduct pier cap show that (1) when the buried depth of cap exceeds 2.35 m, with the increase of buried depth, the fall of roadbed settlement tends to decrease, but the decreased amount is not significant. Considering the factors such as construction cost and complications of construction technology, it is suggested that the best buried depth of cap is about 2.5 m. (2) The fall of roadbed settlement decreases with the decrease of relative stiffness between cap and roadbed. When the relative stiffness exceeds 6.3, the decreasing trend of settlement fall is not significant. The concrete roadbed should have more stiffness in order to reduce the settlement.


Sign in / Sign up

Export Citation Format

Share Document