scholarly journals Shear Wave Velocity and Site Amplification Factors for 25 Strong-Motion Instrument Stations Affected by the M5.8 Mineral, Virginia, Earthquake of August 23, 2011

Author(s):  
Robert E. Kayen ◽  
Brad A. Carkin ◽  
Skye C. Corbett ◽  
Aliza Zangwill ◽  
Ivan Estevez ◽  
...  
2019 ◽  
Vol 36 (1) ◽  
pp. 111-137 ◽  
Author(s):  
Boqin Xu ◽  
Ellen M Rathje ◽  
Youssef Hashash ◽  
Jonathan Stewart ◽  
Kenneth Campbell ◽  
...  

Small-strain damping profiles developed from geotechnical laboratory testing have been observed to be smaller than the damping inferred from the observed site amplification from downhole array recordings. This study investigates the high-frequency spectral decay parameter ( κ0) of earthquake motions from soil sites and evaluates the use of κ0 to constrain the small-strain damping profile for one-dimensional site response analysis. Using data from 51 sites from the Kiban-Kyoshin strong motion network (KiK-net) array in Japan and six sites from California, a relationship was developed between κ0 at the surface and both the 30-m time-averaged shear wave velocity ( V s30) and the depth to the 2.5 km/s shear wave velocity horizon ( Z2.5). This relationship demonstrates that κ0 increases with decreasing V s30 and increasing Z2.5. An approach is developed that uses this relationship to establish a target κ0 from which to constrain the small-strain damping profile used in one-dimensional site response analysis. This approach to develop κ0-consistent damping profiles for site response analysis is demonstrated through a recent site amplification study of Central and Eastern North America for the NGA-East project.


2003 ◽  
Vol 19 (3) ◽  
pp. 653-675 ◽  
Author(s):  
Ellen M. Rathje ◽  
Kenneth H. Stokoe ◽  
Brent Rosenblad

The 1999 Kocaeli and Duzce earthquakes in Turkey generated a moderate amount of strong ground motion data. This paper describes the shear-wave velocity profiles measured at a number of strong motion stations in Turkey using the spectral-analysis-of-surface-waves (SASW) method. The shear-wave velocity profiles from SASW testing compare well with deeper profiles developed by microtremor surface wave inversion, but SASW provides more shear-wave velocity resolution near the ground surface. The developed shear-wave velocity profiles are used to define site classifications for each station. For the Kocaeli earthquake, event-specific attenuation relationships are developed. These relationships show considerable amplification of peak ground acceleration and spectral acceleration (at a period of 0.3 s) at deep soil sites in the far field, but no amplification in the near-fault region. For spectral accelerations at longer spectral periods (1.0 and 2.0 s), amplification is indicated in both the near field and far field. Amplification factors derived from the Kocaeli earthquake strong motion data are generally larger than those used in current attenuation relationships and building codes. The short-period amplification factors derived from the regression decrease with increasing rock motion intensity (PGArock), and the derived long-period amplification factors increase with increasing PGArock. These trends are most likely due to soil nonlinearity. The increase in long-period amplification factors with PGArock is not taken into account in current building codes.


2020 ◽  
Author(s):  
Che-Min Lin ◽  
Jyun-Yan Huang ◽  
Chun-Hsiang Kuo ◽  
Kuo-Liang Wen

<p>There are two kinds of bedrocks that are widely used in seismology and earthquake engineering respectively. The seismology field uses the “seismic bedrock” to define an interface that has a practically lateral extent. The strata deeper than this interface is much more homogeneous in comparison with the shallower one. It is common to set the seismic bedrock within the upper crust has 3000 m/sec of the shear wave velocity. In contrast, the earthquake engineering prefers the shallower interface which dominates the main seismic site amplification, especially the predominant frequency of ground motion. The interface is called “Engineering Bedrock”, which the underlying stratum has the shear wave velocity from 300 to 1000 m/sec for different purposes. But, the reference shear wave velocity of the engineering bedrock is mostly defined as 760 m/sec for ground motion prediction and simulation. In Taiwan, the Central Weather Bureau (CWB) constructed and operates a dense strong-motion network called TSMIP (Taiwan Strong Motion Instrument Program), which provides numerous ground motion data for seismology and earthquake engineering. In our previous studies, the shallow shear wave velocity profiles of over 700 TSMIP stations were estimated by the Receiver Function method. The velocity profiles are from the ground surface to the depth with the shear wave velocity of at least 2000 m/sec. It allows us to compare the theoretical site amplification of the velocity profile of TSMIP stations with their observed one from the seismic records. The variance of fitness between theoretical and observed amplifications through shear wave velocity is analyzed to evaluate which reference velocity can appropriately define the depth of engineering bedrock, where the most site amplification occur beneath, in all of Taiwan. The difference between local geology is also discussed. Finally, an engineering bedrock map is proposed for further applications in earthquake engineering.</p>


2005 ◽  
Vol 21 (1) ◽  
pp. 1-30 ◽  
Author(s):  
Yoojoong Choi ◽  
Jonathan P. Stewart

We develop empirical relationships to predict nonlinear (i.e., amplitude-dependant) amplification factors for 5% damped response spectral acceleration as a continuous function of average shear wave velocity in the upper 30 m, Vs-30. We evaluate amplification factors as residuals between spectral accelerations from recordings and modified rock attenuation relationships for active regions. Amplification at low- and mid-periods is shown to increase with decreasing Vs-30 and to exhibit nonlinearity that is dependent on Vs-30. The degree of nonlinearity is large for NEHRP Category E (Vs-30<180 m/s) but decreases rapidly with Vs-30, and is small for Vs-30>∼300 m/s. The results can be used as Vs-30-based site factors with attenuation relationships. The results also provide an independent check of site factors published in the NEHRP Provisions, and apparent bias in some of the existing NEHRP factors is identified. Moreover, the results provide evidence that data dispersion is dependent on Vs-30.


2021 ◽  
Author(s):  
Bhavesh Pandey ◽  
Ravi S Jakka

Abstract The selection of half-space or reference sites significantly influences site amplification studies. However, there are no well-defined guidelines in the literature. Generally, a layer with a local shear wave velocity (VS) of more than 760 m/s is considered a bedrock/half-space/reference site. This study attempts to formulate a rationale for selecting bedrock stiffness to be used as a half-space/reference site. For this study, VS,30 (average shear wave velocity of top 30-meter soil strata from shear wave velocity measurements) and the site's fundamental frequency (obtained from Horizontal to vertical spectral ratio of ambient vibration records) were used as proxies to study the influence of bedrock/half-space and development of a rationale for their selection. This study uses strong-motion data from India's sixty-two strong motion stations and a few from Japan (Kik-Net). The results suggest that considering a site with a shear wave velocity of 760 m/s may not be suitable as a half-space/bedrock for most geomorphological conditions. The results also recognize a pattern that can help in the development of a mathematical model for determining the bedrock for a site using VS,30 and its fundamental frequency as a proxy.


Author(s):  
Roberto Paolucci ◽  
Mauro Aimar ◽  
Andrea Ciancimino ◽  
Marco Dotti ◽  
Sebastiano Foti ◽  
...  

AbstractIn this paper the site categorization criteria and the corresponding site amplification factors proposed in the 2021 draft of Part 1 of Eurocode 8 (2021-draft, CEN/TC250/SC8 Working Draft N1017) are first introduced and compared with the current version of Eurocode 8, as well as with site amplification factors from recent empirical ground motion prediction equations. Afterwards, these values are checked by two approaches. First, a wide dataset of strong motion records is built, where recording stations are classified according to 2021-draft, and the spectral amplifications are empirically estimated computing the site-to-site residuals from regional and global ground motion models for reference rock conditions. Second, a comprehensive parametric numerical study of one-dimensional (1D) site amplification is carried out, based on randomly generated shear-wave velocity profiles, classified according to the new criteria. A reasonably good agreement is found by both approaches. The most relevant discrepancies occur for the shallow soft soil conditions (soil category E) that, owing to the complex interaction of shear wave velocity, soil deposit thickness and frequency range of the excitation, show the largest scatter both in terms of records and of 1D numerical simulations. Furthermore, 1D numerical simulations for soft soil conditions tend to provide lower site amplification factors than 2021-draft, as well as lower than the corresponding site-to-site residuals from records, because of higher impact of non-linear (NL) site effects in the simulations. A site-specific study on NL effects at three KiK-net stations with a significantly large amount of high-intensity recorded ground motions gives support to the 2021-draft NL reduction factors, although the very limited number of recording stations allowing such analysis prevents deriving more general implications. In the presence of such controversial arguments, it is reasonable that a standard should adopt a prudent solution, with a limited reduction of the site amplification factors to account for NL soil response, while leaving the possibility to carry out site-specific estimations of such factors when sufficient information is available to model the ground strain dependency of local soil properties.


Sign in / Sign up

Export Citation Format

Share Document