Land use and land cover maps for Montara Mountain, California

1978 ◽  
Author(s):  
Keyword(s):  
Land Use ◽  
Land ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 443
Author(s):  
Evidence Chinedu Enoguanbhor ◽  
Florian Gollnow ◽  
Blake Byron Walker ◽  
Jonas Ostergaard Nielsen ◽  
Tobia Lakes

Land use planning as strategic instruments to guide urban dynamics faces particular challenges in the Global South, including Sub-Saharan Africa, where urgent interventions are required to improve urban and environmental sustainability. This study investigated and identified key challenges of land use planning and its environmental assessments to improve the urban and environmental sustainability of city-regions. In doing so, we combined expert interviews and questionnaires with spatial analyses of urban and regional land use plans, as well as current and future urban land cover maps derived from Geographic Information Systems and remote sensing. By overlaying and contrasting land use plans and land cover maps, we investigated spatial inconsistencies between urban and regional plans and the associated urban land dynamics and used expert surveys to identify the causes of such inconsistencies. We furthermore identified and interrogated key challenges facing land use planning, including its environmental assessment procedures, and explored means for overcoming these barriers to rapid, yet environmentally sound urban growth. The results illuminated multiple inconsistencies (e.g., spatial conflicts) between urban and regional plans, most prominently stemming from conflicts in administrative boundaries and a lack of interdepartmental coordination. Key findings identified a lack of Strategic Environmental Assessment and inadequate implementation of land use plans caused by e.g., insufficient funding, lack of political will, political interference, corruption as challenges facing land use planning strategies for urban and environmental sustainability. The baseline information provided in this study is crucial to improve strategic planning and urban/environmental sustainability of city-regions in Sub-Saharan Africa and across the Global South, where land use planning faces similar challenges to address haphazard urban expansion patterns.


Water ◽  
2020 ◽  
Vol 12 (6) ◽  
pp. 1541
Author(s):  
Albert Nkwasa ◽  
Celray James Chawanda ◽  
Anna Msigwa ◽  
Hans C. Komakech ◽  
Boud Verbeiren ◽  
...  

In SWAT and SWAT+ models, the variations in hydrological processes are represented by Hydrological Response Units (HRUs). In the default models, agricultural land cover is represented by a single growing cycle. However, agricultural land use, especially in African cultivated catchments, typically consists of several cropping seasons, following dry and wet seasonal patterns, and are hence incorrectly represented in SWAT and SWAT+ default models. In this paper, we propose a procedure to incorporate agricultural seasonal land-use dynamics by (1) mapping land-use trajectories instead of static land-cover maps and (2) linking these trajectories to agricultural management settings. This approach was tested in SWAT and SWAT+ models of Usa catchment in Tanzania that is intensively cultivated by implementing dominant dynamic trajectories. Our results were evaluated with remote-sensing observations for Leaf Area Index (LAI), which showed that a single growing cycle did not well represent vegetation dynamics. A better agreement was obtained after implementing seasonal land-use dynamics for cultivated HRUs. It was concluded that the representation of seasonal land-use dynamics through trajectory implementation can lead to improved temporal patterns of LAI in default models. The SWAT+ model had higher flexibility in representing agricultural practices, using decision tables, and by being able to represent mixed cropping cultivations.


2021 ◽  
Author(s):  
Thais M. Rosan ◽  
Kees Klein Goldewijk ◽  
Raphael Ganzenmüller ◽  
Michael O'Sullivan ◽  
Julia Pongratz ◽  
...  

<p>Brazil is responsible for about one third of the global land use and land cover change (LULCC) carbon dioxide emissions. However, there is a disagreement among different methodologies on the magnitude and trends in emissions and their geographic distribution. One of the main uncertainties is associated with different LULCC datatasets used as input in the different approaches. In this work we perform an evaluation of LULCC datasets for Brazil, including the global dataset (HYDE 3.2) used in the annual Global Carbon Budget (GCB), and national Brazilian dataset (MapBiomas) over the period 2000-2018. We also analyze the latest global HYDE 3.3 dataset based on new FAO inventory estimates and multi-annual ESA CCI satellite-based land cover maps. Results show that the new HYDE 3.3 can represent well the observed spatial variation in cropland and pastures areas over the last decades compared to national data (MapBiomas) and shows an improvement compared to HYDE 3.2 used in GCB. However, the magnitude of LULCC assessed with HYDE 3.3 is lower than national estimates from MapBiomas. Finally, we used HYDE 3.3 as input to two different approaches included in GCB, a global bookkeeping model (BLUE) and a process-based Dynamic Global Vegetation Model (JULES-ES) to determine the impact of the new version of HYDE dataset on Brazil’s land-use emissions trends over the period 2000-2017. Both JULES-ES and BLUE now simulate a negative land-use emissions trend for the last two decades. This negative trend is in agreement with Brazilian INPE-EM, global H&N bookkeeping models, FAO and as reported in National GHG inventories (NGHGI), although magnitudes differ among approaches. Overall, the inclusion of the multi-annual ESA CCI Land Cover dataset to allocate spatially the FAO statistical data has improved spatial representation of agricultural area change in Brazil in the last two decades, contributing to improve global model capability to simulate Brazil’s LULCC emissions in agreement with national trends estimates and spatial distribution.</p>


2017 ◽  
Vol 9 (2) ◽  
pp. 75
Author(s):  
Usman Arsyad ◽  
Andang Suryana Soma ◽  
Wahyuni Wahyuni ◽  
Tita Rahayu Arief

This study aimed to analyze the compatibility between the land cover spatial pattern plan and determine the direction of land use in the event of a discrepancy. This research was conducted on the Kelara Upstream Watershed located in gowa and jeneponto using land cover maps generated from landsat imagery interpretation 8. Then overlay to map the spatial pattern plan. Then determined the order of land use is done when there is a discrepancy between the results of the overlay with maps of land cover spatial pattern plan. The result showed that 41,05% of the total area of the Kelara Upstream Watershed of 28.185,68 ha a land use form of a orchards. After overlay discovered discrepancy land cover maps with maps of spatial pattern plan. Based on a map spatial pattern plan that should in reality the field is man made forest, orchards, dryland agriculture and rice field. According to these condition the specified order of land use that is Hkm (Community Forest) with agroforestry and Agroforestry Systems. Rice field In the Protected and Production forest order to intensification land use and plantations forest, orchards and dry land agriculture order to Community Forest with agroforestry systems . In the area of cultivation the land use rice field, orchards and dryland agriculture order to agroforestry systems.


2019 ◽  
Vol 41 (1) ◽  
pp. 146-153 ◽  
Author(s):  
Megersa Olumana Dinka ◽  
Degefa Dhuga Chaka

Abstract Land use/land cover changes (LULCC) at Adei watershed (Ethiopia) over a period of 23 years (1986–2009) has been analysed from LANDSAT imagery and ancillary data. The patterns (magnitude and direction) of LULCC were quantified and the final land use/land cover maps were produced after a supervised classification with appropriate post-processing. Image analysis results revealed that the study area has undergone substantial LULCC, primarily a shift from natural cover into managed agro-systems, which is apparently attributed to the increasing both human and livestock pressure. Over the 23 years, the aerial coverage of forest and grass lands declined by 8.5% and 4.3%, respectively. On the other hand, agricultural and shrub lands expanded by 9.1% and 3.7%, respectively. This shows that most of the previously covered by forest and grass lands are mostly shifted to the rapidly expanding farm land use classes. The findings of this study suggested that the rate of LULCC over the study period, particularly deforestation due to the expansion of farmland need to be given due attention to maintain the stability and sustainability of the ecosystem.


2019 ◽  
pp. 1100-1123
Author(s):  
Cidália Costa Fonte ◽  
Joaquim António Patriarca ◽  
Marco Minghini ◽  
Vyron Antoniou ◽  
Linda See ◽  
...  

OpenStreetMap (OSM) is a bottom up community-driven initiative to create a global map of the world. Yet the application of OSM to land use and land cover (LULC) mapping is still largely unexploited due to problems with inconsistencies in the data and harmonization of LULC nomenclatures with OSM. This chapter outlines an automated methodology for creating LULC maps using the nomenclature of two European LULC products: the Urban Atlas (UA) and CORINE Land Cover (CLC). The method is applied to two regions in London and Paris. The results show that LULC maps with a level of detail similar to UA can be obtained for the urban regions, but that OSM has limitations for conversion into the more detailed non-urban classes of the CLC nomenclature. Future work will concentrate on developing additional rules to improve the accuracy of the transformation and building an online system for processing the data.


Sign in / Sign up

Export Citation Format

Share Document