scholarly journals Variability of surface-water quantity and quality and shallow groundwater levels and quality within the Rio Grande Project Area, New Mexico and Texas, 2009–13

Author(s):  
Jessica M. Driscoll ◽  
Lauren R. Sherson
Water ◽  
2021 ◽  
Vol 13 (10) ◽  
pp. 1331
Author(s):  
Scott Ikard ◽  
Andrew Teeple ◽  
Delbert Humberson

The Rio Grande/Río Bravo del Norte (hereinafter referred to as the “Rio Grande”) is the primary source of recharge to the Mesilla Basin/Conejos-Médanos aquifer system in the Mesilla Valley of New Mexico and Texas. The Mesilla Basin aquifer system is the U.S. part of the Mesilla Basin/Conejos-Médanos aquifer system and is the primary source of water supply to several communities along the United States–Mexico border in and near the Mesilla Valley. Identifying the gaining and losing reaches of the Rio Grande in the Mesilla Valley is therefore critical for managing the quality and quantity of surface and groundwater resources available to stakeholders in the Mesilla Valley and downstream. A gradient self-potential (SP) logging survey was completed in the Rio Grande across the Mesilla Valley between 26 June and 2 July 2020, to identify reaches where surface-water gains and losses were occurring by interpreting an estimate of the streaming-potential component of the electrostatic field in the river, measured during bankfull flow. The survey, completed as part of the Transboundary Aquifer Assessment Program, began at Leasburg Dam in New Mexico near the northern terminus of the Mesilla Valley and ended ~72 kilometers (km) downstream at Canutillo, Texas. Electric potential data indicated a net losing condition for ~32 km between the Leasburg Dam and Mesilla Diversion Dam in New Mexico, with one ~200-m long reach showing an isolated saline-groundwater gaining condition. Downstream from the Mesilla Diversion Dam, electric-potential data indicated a neutral-to-mild gaining condition for 12 km that transitioned to a mild-to-moderate gaining condition between 12 and ~22 km downstream from the dam, before transitioning back to a losing condition along the remaining 18 km of the survey reach. The interpreted gaining and losing reaches are substantiated by potentiometric surface mapping completed in hydrostratigraphic units of the Mesilla Basin aquifer system between 2010 and 2011, and corroborated by surface-water temperature and conductivity logging and relative median streamflow gains and losses, quantified from streamflow measurements made annually at 16 seepage-measurement stations along the survey reach between 1988 and 1998 and between 2004 and 2013. The gaining and losing reaches of the Rio Grande in the Mesilla Valley, interpreted from electric potential data, compare well with relative median streamflow gains and losses along the 72-km long survey reach.


Water ◽  
2019 ◽  
Vol 11 (2) ◽  
pp. 200 ◽  
Author(s):  
Jing Liang ◽  
Wenzhe Li ◽  
Scott Bradford ◽  
Jiří Šimůnek

Contaminants can be rapidly transported at the soil surface by runoff to surface water bodies. Physically-based models (PBMs), which are based on the mathematical description of main hydrological processes, are key tools for predicting surface water impairment. Along with PBMs, data-driven models are becoming increasingly popular for describing the behavior of hydrological and water resources systems since these models can be used to complement or even replace physically based-models. Here we propose a new data-driven model as an alternative to a physically-based overland flow and transport model. First, we have developed a physically-based numerical model to simulate overland flow and contaminant transport. A large number of numerical simulations was then carried out to develop a database containing information about the impact of various relevant factors on surface runoff quantity and quality, such as different weather patterns, surface topography, vegetation, soil conditions, contaminants, and best management practices. Finally, the resulting database was used to train data-driven models. Several Machine Learning techniques were explored to find input-output functional relations. The results indicate that the Neural Network model with two hidden layers performed the best among selected data-driven models, accurately predicting runoff water quantity and quality over a wide range of parameters.


2021 ◽  
Vol 2 ◽  
Author(s):  
Sandra Garcia ◽  
Pascale Louvat ◽  
Jerome Gaillardet ◽  
Syprose Nyachoti ◽  
Lin Ma

In semi-arid to arid regions, both anthropogenic sources (urban and agriculture) and deeper Critical Zone (groundwater with long flow paths and water residence times) may play an important role in controlling chemical exports to rivers. Here, we combined two anthropogenic isotope tracers: uranium isotope ratios (234U/238U) and boron isotope ratios (δ11B), with the 87Sr/86Sr ratios to identify and quantify multiple solute (salinity) sources in the Rio Grande river in southern New Mexico and western Texas. The Rio Grande river is a major source of freshwater for irrigation and municipal uses in southwestern United States. There has been a large disagreement about the dominant salinity sources to the Rio Grande and particularly significant sources are of anthropogenic (agriculture practices and shallow groundwater flows, groundwater pumping, and urban developments) and/or geological (natural groundwater upwelling) origins. Between 2014 and 2016, we collected monthly river samples at 15 locations along a 200-km stretch of the Rio Grande river from Elephant Butte Reservoir, New Mexico to El Paso, Texas, as well as water samples from agricultural canals and drains, urban effluents and drains, and groundwater wells. Our study shows that due to the presence of localized and multiple salinity inputs, total dissolved solids (TDS) and isotope ratios of U, B, and Sr in the Rio Grande river show high spatial and temporal variability. Several agricultural, urban, and geological sources of salinity in the Rio Grande watershed have characteristic and distinguishable U, Sr, and B isotope signatures. However, due to the common issue of overlapping signatures as identified by previous tracer studies (such as δ18O, δD, δ34S), no single isotope tracer of U, Sr, or B isotopes was powerful enough to distinguish multiple salinity sources. Here, combining the multiple U, Sr, and B isotope and elemental signatures, we applied a multi-tracer mass balance approach to quantify the relative contributions of water mass from the identified various salinity end members along the 200-km stretch of the Rio Grande during different river flow seasons. Our results show that during irrigation (high river flow) seasons, the Rio Grande had uniform chemical and isotopic compositions, similar to the Elephant Butte reservoir where water is stored and well-mixed, reflecting the dominant contribution from shallow Critical Zone in headwater regions in temperate southern Colorado and northern New Mexico. In non-irrigation (low flow) seasons when the river water is stored at Elephant Butte reservoir, the Rio Grande river at many downstream locations showed heterogeneous chemical and isotopic compositions, reflecting variable inputs from upwelling of groundwater (deeper CZ), displacement of shallow groundwater, agricultural return flows, and urban effluents. Our study highlights the needs of using multi-tracer approach to investigate multiple solutes and salinity sources in rivers with complex geology and human impacts.


Sign in / Sign up

Export Citation Format

Share Document