scholarly journals Effects of groundwater withdrawals from the Hurricane Fault zone on discharge of saline water from Pah Tempe Springs, Washington County, Utah

Author(s):  
Philip M. Gardner

2020 ◽  
Author(s):  
Quinn C. Wenning ◽  
Antonio P. Rinaldi ◽  
Alba Zappone ◽  
Melchior Grab ◽  
Clement Roques ◽  
...  

<p>Understanding potential caprock failure through fault zone leakage is crucial for the safe, long-term containment of a CO<sub>2</sub> storage site. Thus, the presence of faults in caprocks will greatly affect the site characterization process in terms of the safety assessment. The CS-D experiment at the Mont Terri Lab aims at investigating caprock integrity by determining CO<sub>2</sub>-rich water mobility in a fault zone. Seven boreholes were drilled in the clay rock, all crosscutting a fault at depths of 17-30 m below the niche floor. The boreholes were fully cored, and the samples analysed in various laboratories. All boreholes were instrumented for monitoring geochemical and geomechanical changes induced by fluid injection for prolonged time, with the goal to better understand mechanisms of CO<sub>2</sub> leakage in a faulted caprock. We deployed a multi component monitoring setup measuring pressure, axial and 3D deformation, seismic activity and cross-hole electrical resistivity. A borehole was fully dedicated to the monitoring of the injection front, as well as geochemical in-situ measurements and fluid sampling. A portable mass spectrometer for direct measurements of gas has been installed in a dedicated borehole interval. Injection and monitoring activities started in December 2018, with multiple injection tests with saline water at pressures up to 6 MPa, in order to characterize the hydraulic response of the fault. A prolonged injection of CO<sub>2</sub>-saturated water at constant head pressure started in June 2019 and lasted for about 8 months. In this contribution, we will present the analysis of the data collected during the fault characterization (hydraulic, geophysics, and core analysis) as well as results of the continuous months-long injection. Preliminary interpretation of the monitoring data suggests that a fault does not necessarily form a pathway for the fluid to escape at shallow depth.</p>



Author(s):  
Roberto González-De Zayas ◽  
Liosban Lantigua Ponce de León ◽  
Liezel Guerra Rodríguez ◽  
Felipe Matos Pupo ◽  
Leslie Hernández-Fernández

The Cenote Jennifer is an important and unique aquatic sinkhole in Cayo Coco (Jardines del Rey Tourist Destination) that has brackish to saline water. Two samplings were made in 1998 and 2009, and 4 metabolism community experiments in 2009. Some limnological parameters were measured in both samplings (temperature, salinity, pH, dissolved oxygen major ions, hydrogen sulfide, nutrients and others). Community metabolism was measured through incubated oxygen concentration in clear and dark oxygen bottles. Results showed that the sinkhole limnology depends on rainfall and light incidence year, with some stratification episodes, due to halocline or oxycline presence, rather than thermocline. The sinkhole water was oligotrophic (total nitrogen of 41.5 ± 22.2 μmol l−1 and total phosphorus of 0.3 ± 0.2 μmol l−1) and with low productivity (gross primary productivity of 63.0 mg C m−2 d−1). Anoxia and hypoxia were present at the bottom with higher levels of hydrogen sulfide, lower pH and restricted influence of the adjacent sea (2 km away). To protect the Cenote Jennifer, tourist exploitation should be avoided and more resources to ecological and morphological studies should be allocated, and eventually use this aquatic system only for specialized diving. For conservation purposes, illegal garbage disposal in the surrounding forest should end.



2015 ◽  
Vol 10 (1) ◽  
pp. 31-38
Author(s):  
Ildikó Buocz ◽  
Nikoletta Rozgonyi-Boissinot ◽  
Ákos Török




2018 ◽  
Vol 71 (0) ◽  
pp. 33-42
Author(s):  
Shigeru Ino ◽  
Shigeyuki Suda ◽  
Hidekuni Kikuchi ◽  
Shiro Ohkawa ◽  
Shintaro Abe ◽  
...  


Sign in / Sign up

Export Citation Format

Share Document