fault characterization
Recently Published Documents


TOTAL DOCUMENTS

90
(FIVE YEARS 22)

H-INDEX

11
(FIVE YEARS 2)

2021 ◽  
pp. 1-65
Author(s):  
Charlotte Botter ◽  
Alex Champion

Seismic data is one of the main ways to characterize faults in the subsurface. Faults are 3D entities and their internal structure play a key role in controlling fluid flow in the subsurface. We aim to characterize a geologically sound fault volume that could be used for subsurface model conditioning. We present an attribute analysis of a normal fault from a high resolution seismic dataset of the Thebe Field, offshore NW Australia. We merge together a series of common attributes for fault characterization: dip, semblance and tensor (DST), and we also introduce a new Total Horizontal Derivative (THD) attribute to define the edges of the fault zone. We apply a robust statistical analysis of the attributes and fault damage definition through the analysis of 2D profiles along interpreted horizons. Using the THD attribute, we interpret a smaller width of the fault zone and a more straightforward definition of the boundaries than from the DST cube. Following the extraction of this fault volume, we define two seismic facies that are correlated to lithologies extracted from our conceptual model. We observe a wider fault zone at larger throws, which corresponds also to syn-rift sequence, hence more complex internal fault damage. Our method provides volumes at adequate scale for reservoir modeling and could therefore be used as a proxy for property conditioning.


2021 ◽  
Author(s):  
Giancarlo Molli ◽  
Rick Bennett ◽  
Jacques Malavieille ◽  
Enrico Serpelloni ◽  
Fabrizio Storti ◽  
...  

<p>As part of an ongoing project of mapping, structural studies and fault characterization we present an updated tectonic scheme and data set for the active fault systems that shaped the inner portion of the Apennines north of the Arno river. Geomorphology, stratigraphy of Plio-Quaternary sediments, GPS data, historical and instrumental seismicity have been reviewed and combined with structural studies to define the neotectonic history of the investigated region. Within the studied area, first-order physiographic and structural features allow to define different structural domains related to a set of ranges with a dominant NW-SE direction separated by intramontane or continental/marine morphotectonic depressions of the Lunigiana, Garfagnana, Lucca-Mt.Albano, La Spezia-Carrara and the off-shore Viareggio basin. The main boundary faults and internal fault segments of the different structural domains were described while the Plio-Quaternary sedimentary records has been used to constrain their long to short term deformation and rates, with the aim to improve current Italian catalogues - DISS (INGV) and Ithaca (ISPRA) - with some utilities for the seismic microzonation local projects. Moreover, our work aims to draw the attention of the scientific community to the seismotectonics of a region in which the seismic hazard is largely considered medium to low despite the occurrence, one century ago, of one of the most destructive earthquakes that have struck the Italian peninsula, the 1920 Fivizzano EQ, with an estimated Mw 6.5 similar to the main shock of the 2016 Central Italy seismic sequence.</p><p> </p>


2021 ◽  
Vol 21 (2) ◽  
pp. 1009-1016
Author(s):  
Guilherme Heim Weber ◽  
Hector Lise de Moura ◽  
Daniel Rodrigues Pipa ◽  
Cicero Martelli ◽  
Jean Carlos Cardozo da Silva ◽  
...  

2021 ◽  
Author(s):  
Andrew Feitz ◽  
Bruce Radke ◽  
Kwong Soon Chan ◽  
Ludovic Ricard ◽  
Aleks Kalinowski ◽  
...  

2020 ◽  
Vol 223 (3) ◽  
pp. 1805-1819
Author(s):  
Roberto Tonini ◽  
Roberto Basili ◽  
Francesco Emanuele Maesano ◽  
Mara Monica Tiberti ◽  
Stefano Lorito ◽  
...  

SUMMARY The behaviour of tsunami waves at any location depends on the local morphology of the coasts, the encountered bathymetric features, and the characteristics of the source. However, the importance of accurately modelling the geometric properties of the causative fault for simulations of seismically induced tsunamis is rarely addressed. In this work, we analyse the effects of using two different geometric models of the subduction interface of the Calabrian Arc (southern Italy, Ionian Sea) onto the simulated tsunamis: a detailed 3-D subduction interface obtained from the interpretation of a dense network of seismic reflection profiles, and a planar interface that roughly approximates the 3-D one. These models can be thought of as representing two end-members of the level of knowledge of fault geometry. We define three hypothetical earthquake ruptures of different magnitudes (Mw 7.5, 8.0, 8.5) on each geometry. The resulting tsunami impact is evaluated at the 50-m isobath in front of coastlines of the central and eastern Mediterranean. Our results show that the source geometry imprint is evident on the tsunami waveforms, as recorded at various distances and positions relative to the source. The absolute differences in maximum and minimum wave amplitudes locally exceed one metre, and the relative differences remain systematically above 20 per cent with peaks over 40 per cent. We also observe that tsunami energy directivity and focusing due to bathymetric waveguides take different paths depending on which fault is used. Although the differences increase with increasing earthquake magnitude, there is no simple rule to anticipate the different effects produced by these end-member models of the earthquake source. Our findings suggest that oversimplified source models may hinder our fundamental understanding of the tsunami impact and great care should be adopted when making simplistic assumptions regarding the appropriateness of the planar fault approximation in tsunami studies. We also remark that the geological and geophysical 3-D fault characterization remains a crucial and unavoidable step in tsunami hazard analyses.


Author(s):  
Helena M. Wilhelm ◽  
Paulo O. Fernandes ◽  
Camila Steffens ◽  
Kethlyn G. Moscon ◽  
Mauricio Mattoso ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document