scholarly journals Effect of bio control agent Trichoderma (T. viride and T. konnigiil on basal rot of Cloropytum comosum 'Iaxum' caused by Sclerotium rolfsii

Author(s):  
K. A. L. Priyadarshani ◽  
D. B. Kelaniyangoda
Author(s):  
Pranab Dutta ◽  
Pranjal Kr Kaman ◽  
Arti Kumari ◽  
Bishal Saikia ◽  
Lipa Deb

2018 ◽  
Vol 36 (0) ◽  
Author(s):  
R. AKHTAR ◽  
A. JAVAID

ABSTRACT: Onion is attacked by destructive soil-borne fungal plant pathogen Fusarium oxysporum f. sp. cepae, resulting in basal rot disease. In the present study, three Trichoderma species (T. pseudokoningii, T. harzianum and T. reesei) and leaves of solanaceous weed Withania somnifera were used for management of this disease. The in vitro interaction study revealed T. harzianum as the most effective biocontrol agent against the pathogen. In a pot trial, dried leaf material of W. somnifera (1%, 2% and 3% w/w) and inoculum of T. harzianum were mixed in the pot soil previously inoculated with the pathogen. The highest incidence of the disease (87%) was found in positive control (pathogen inoculation without any amendment). Different rates of dry leaf material reduced the incidence of the disease to 41-66%. T. harzianum in combination with leaf material reduced the incidence of the disease to 20-53%. In a laboratory bioassay, the dry leaf extract of W. somnifera was prepared in methanol and partitioned with n-hexane, chloroform, ethyl acetate and n-butanol. The highest concentration (200 mg mL-1) of all except for the n-butanol fraction significantly decreased fungal biomass over control. This study concludes that basal rot of onion can be controlled by combined application of W. somnifera dry leaf material and biological control agent T. harzianum.


Author(s):  
S. G. Borkar

Null hyper-parasitism, a new term is coined by the author to define the hyper-parasitism by a microbial agent on another hyper-parasite. The novel phenomenon of null hyper-parasitism was discovered in the in vitro and in vivo experimentation, where the bio-control agent Trichoderma hamatum hyper-parasitic on Sclerotium rolfsii, a foot rot pathogen of groundnut, was hyper-parasitiosed by a microbial strain of Aspergillus niger and Bacillus thermophillus. Here A. niger and B. thermophillus as null hyper-parasite nullified the bio-control action of hyper-parasite Trichoderma hamatum on Sclerotium rolfsii. The in vivo experimentation suggest that such type of null hyper-parasitism exist in soil ecosystem, may be to maintain the natural microbial equilibrium and extinction of a microbial species from nature due to presence of hyper-parasite and its antagonistic or bio-control activity as evident in the above case of parasite/pathogen S. rolfsii, its hyper-parasite T. hamatum and null hypersite A. niger and B. Thermophillus. Now, therefore the success of the bio-control or hyper-parasitism of soil borne fungal plant pathogen by Trichoderma sp may be dependent on the non- existence of null hyper-parasite in the soil ecosystem where the hyperparasite has to be used.


2014 ◽  
Vol 3 (2) ◽  
pp. 89-100 ◽  
Author(s):  
Khirood Doley ◽  
Mayura Dudhane ◽  
Mahesh Borde ◽  
Paramjit K. Jite

Sclerotium rolfsii (Sacc.) is the causal agent of stem-rot of groundnut plants which is an important damaging soil-borne root pathogen worldwide. Arbuscular mycorrhizal (AM) fungi (Glomus fasciculatum) and Trichoderma asperelloides have shown potential bio-control agent properties against several soil-borne plant pathogens. Interactions between G. fasciculatum, T. asperelloides and soil-borne pathogen S. rolfsii were investigated in this present pot culture experiment. The inoculation of G. fasciculatum and T. asperelloides reduced the severity of disease but their combinations were most effective in reducing harmful effects of S. rolfsii. The arbuscule percentage of AM fungi was affected by presence of T. asperelloides but chlorophyll content got increased by AM fungi or T. asperelloides treatments during S. rolfsii attack. The defense related physiological, biochemical and anti-oxidant activities observed in roots of groundnut plant significantly increased by single inoculation of AM fungi or Trichoderma. But, the combined inoculations of AM fungi and Trichoderma species showed the highest defense related activities. Moreover, single application of either AM fungi or Trichoderma species showed potential for the biocontrol of soil-borne plant pathogen but their combined application attributed most substantial inhibition in development of pathogen


2011 ◽  
Vol 30 (10) ◽  
pp. 1315-1320 ◽  
Author(s):  
Wei Tang ◽  
Yun-Zhi Zhu ◽  
Hua-Qi He ◽  
Sheng Qiang ◽  
Bruce A. Auld

2016 ◽  
Vol 7 (1) ◽  
pp. 1
Author(s):  
Nurul Hidayah ◽  
Titiek Yulianti

<p>Jamur Rhizoctonia solani dan Sclerotium rolfsii merupakan kelompok jamur steril (tidak menghasilkan spora) tetapi dapat menghasilkan sklerosia sebagai sumber inokulum primer, dan struktur istirahat jamur yang dapat bertahan selama beberapa tahun di dalam tanah saat kondisi lingkungan kurang menguntungkan. Penggunaan fungisida, fumigasi, dan solarisasi tanah telah digunakan untuk mengendalikan kedua jamur tersebut, namun hasil yang diperoleh masih beragam. Pengendalian hayati dengan menggunakan bakteri Bacillus sp. yang merupakan salah satu kelompok agens hayati patogen diketahui memberikan hasil yang baik pada beberapa tanaman. Penelitian yang bertujuan menguji potensi B. cereus dalam menghambat pertumbuhan jamur R. solani dan S. rolfsii secara in vitro dilaksanakan di Laboratorium Fitopatologi Balittas dengan menggunakan metode dual culture pada media potato dextrose agar (PDA). Miselia jamur R. solani dan S. rolfsii masing-masing berumur 5 hari diambil dengan menggunakan cork borer ukuran 0,5 cm ditanam pada media PDA berhadapan dengan B. cereus dengan jarak 3 cm. Penelitian disusun dalam rancangan acak lengkap dan diulang empat kali. Pengamatan dilakukan terhadap persentase penghambatan pertumbuhan jamur oleh Bacillus sp. dan laju pertumbuhan jamur. Hasil penelitian menunjukkan bahwa Bacillus sp. mampu menghambat pertumbuhan miselia R. solani dan S. rolfsii masing-masing sebesar 68,9% dan 33% pada hari ketiga setelah perlakuan. Keberadaan B. cereus dapat memperlambat laju pertumbuhan R. solani (15,5 mm/24 jam), dibandingkan perlakuan kontrol (tanpa B. cereus) sebesar 19,7 mm/24 jam. Hasil ini menunjukkan bahwa B. cereus dapat menghambat pertumbuhan R. solani dan berpotensi untuk dikembangkan sebagai agens hayati.</p><p> </p><p>Rhizoctonia solani and Sclerotium rolfsii (the causal agents of damping off disease on various hosts) are the group of sterile fungi that cannot produce spores. Nevertheless, they produce sclerotia as primary inocula and resting spores when facing unfavorable condition. Several control methods using chemical fungicides and solarization had been conducted, but the results were still inconsistent. In addition, the use of Bacillus sp. as a biological control agent for several plant diseases had provided successful results. Furthermore, the research aimed to evaluate the potency of B. cereus towards R. solani and S. rolfsii in vitro was carried out in the laboratory of phytopathology using dual culture method on PDA medium. Five days of R. solani and S. rolfsii miselia were plugged and inoculated on PDA medium toward B. cereus. The research was arranged by completely randomized design with four replicates. The percentage of fungal inhibition and fungal growth rate were observed. The result showed that B. cereus exhibited mycelial growth inhibition activity of R. solani and S. rolfsii by 68,9% and 33% three days after treatments, respectively. The result also indicated that<br />B. cereus has a potential prospect to be developed as a biological control agent because the bacteria could suspend the growth rate of R. solani.</p>


2016 ◽  
Vol 8 (2) ◽  
pp. 1100-1109 ◽  
Author(s):  
Anita Puyam

Trichoderma spp are free living filamentous fungi. They are cosmopolitan and versatile in nature. They have the potential to produce several enzymes that can degrade the cell wall materials. Also, they release a number of fungi toxic substances that can inhibit the growth of the fungal pathogens. Many mechanisms have been described on how Trichoderma exert beneficial effects on plants as a bio-control agent. But due to its versatile nature, its potential cannot be explored to its full extent. And it is a developing science in the field of bio-control with its new discoveries adding to the usefulness of the fungi as a bio-control agent. Its development as a bio-control agent passes through many phases and each phase adding novel ideas that will help in the development of an efficient bio-agent which in turn will help in the crop improvement and disease management. The studies on their various aspects responsible for bio-control will open a flood gate to the development of Trichoderma as an efficient and reliable bio-agent and provide a better scope for implementation in crop and disease management. The in vitro antagonistic activity of Trichoderma viride against phytopathogens (Sclerotium rolfsii, Fusarium oxysporum f.s.p. ciceri, Fusarium oxysporum f.s.p. udum) was studied and it was found to be potentially effective against F. oxysporum f.s.p. ciceri followed by F. oxysporum f.s.p. udum and Sclerotium rolfsii.


AgriPeat ◽  
2019 ◽  
Vol 19 (02) ◽  
pp. 68-76
Author(s):  
Admin Journal

ABSTRACTThe Sclerotium Rot Disease is highly destructive to the scallions cultivation in the peat soil. Theantagonistic fungi isolated from the rhizosphere and the endophytes of healthy plants, have beenproven to be able to reduce Sclerotium rolfsii. The aim of this study was to evaluate thecharacteristics of antagonistic fungi from rhizosphere and endophytes of Scallions to S. rolfsii in- vitro in the laboratory. The purpose of this study was also to perform the suppression test on theintensity of Sclerotium rolfsiiRot Disease in planta in the peat media in the screen house. Thisresearch it was shown that genus Fusarium, Penicillium, Aspergillusas antagonistic fungi, wereidentified from the endophytes, meanwhile genus Trichoderma, Penicillium dan Aspergillus sp. were identified from the rhizosphere. Trichoderma Rz-1 and Trichoderma Rz-3 isolated from therhizosphere was shown to have the highest antagonistic activity by 94,4 %, followed by AspergillusEd-2, which was isolated from the endophytes by 83,8%. In planta on peat media, TrichodermaRz-1 was capable to demonstrate 82,19% of antagonistic effect and it could suppress SclerotiumRot Diseasehence it produced the fresh weight of the plant highest to 19gcluster-1. Taken together,the result of this study showed that Trichoderma Rz-1 isolated from rhizosphere has been proven tobe the most beneficial to reduce the Sclerotium rolfsii on Scallions as a biological control agent,especially in peat soils.Keywords: biocontrol, rhizosphere,endophyte, scallions, Sclerotium rolfsii


2018 ◽  
Vol 10 (1) ◽  
pp. 307-312
Author(s):  
Shiva Kant Kushwaha ◽  
Sanjeev Kumar ◽  
Balkishan Chaudhary

Three biocontrol agents viz., Trichoderma viride, T. virens and T. harzianum were evaluated to test the antagonism against Sclerotium rolfsii under in vitro conditions. All the three antagonists’ viz., T. viride, T. virens and T. harzianum have shown the potential of parasitizing the growth of Sclerotium rolfsii in vitro. The rate of inhibition was fastest in T. harzianum (63.60%) followed by T virens (51.5 %). Least inhibition was recorded in T. viride (50.85% ) after 72 hours of incubation. However, T. viride showed the highest (91.31%) reduction in sclerotia formation followed by T. harzianum (84.92%) and T. virens (84.29%) after 15 days of incubation. The volatile compounds from Trichoderma viride were found most effective in suppressing the mycelial growth (51.11%) and sclerotia production (95.90%) of the target pathogen. The culture filtrate from both T. harzianum and T. viride (15% concentration) was found very effective in inhibiting the radial growth (57.46 and 49.62%) and sclerotia formation (98.20 and 99.83%) of Sclerotium rolfsii. The antagonists such as T. harzianum and T. viride can be used as a bio-control agent against S. rolfsii under field condition.


Sign in / Sign up

Export Citation Format

Share Document