A coupled model simulation of Ocean thermohaline properties of the last glacial maximum

2004 ◽  
Vol 42 (3) ◽  
pp. 213-220 ◽  
Author(s):  
Seong‐Joong Kim
2021 ◽  
Author(s):  
Jurek Müller ◽  
Fortunat Joos

Abstract. Peatlands are diverse wetland ecosystems distributed mostly over the northern latitudes and tropics. Globally they store a large portion of the global soil organic carbon and provide important ecosystem services. The future of these systems under continued anthropogenic warming and direct human disturbance has potentially large impacts on atmospheric CO2 and climate. We performed global long term projections of peatland area and carbon over the next 5000 years using a dynamic global vegetation model forced with climate anomalies from ten models of the Coupled Model Intercomparison Project (CMIP6) and three scenarios. These projections are continued from a transient simulation from the Last Glacial Maximum to the present to account for the full transient history. Our results suggest short to long term net losses of global peatland area and carbon, with higher losses under higher emission scenarios. Large parts of today's active northern peatlands are at risk. Conditions for peatlands in the tropics and, in case of mitigation, eastern Asia and western north America improve. Factorial simulations reveal committed historical changes and future rising temperature as the main driver of future peatland loss and increasing precipitations as driver for regional peatland expansion. Additional simulations forced with two CMIP6 scenarios extended transiently beyond 2100, show qualitatively similar results to the standard scenarios, but highlight the importance of extended future scenarios for long term carbon cycle projections. The spread between simulations forced with different climate model anomalies suggests a large uncertainty in projected peatland variables due to uncertain climate forcing. Our study highlights the importance of quantifying the future peatland feedback to the climate system and its inclusion into future earth system model projections.


2006 ◽  
Vol 19 (9) ◽  
pp. 1706-1715 ◽  
Author(s):  
Gareth P. Williams ◽  
Kirk Bryan

Abstract Factors controlling the position and strength of the surface winds during the Last Glacial Maximum (LGM) are examined using a global, multilevel, moist, atmospheric model. The idealized aquaplanet model is bounded below by a prescribed axisymmetric temperature distribution that corresponds to an ocean-covered surface. Various forms of this distribution are used to examine the influence of changes in the surface cooling and baroclinicity rates. The model omits seasonal variations. Increasing the cooling lowers the tropopause and greatly reduces the moist convection in the Tropics, thereby causing a weakening and equatorward contraction of the Hadley cell. Such a cooling also weakens the surface westerlies and shifts the peak westerly stress equatorward. An extra surface baroclinicity in midlatitudes—implicitly associated with an increase in the polar sea ice—also shifts the peak westerly stress equatorward, but strengthens the surface westerlies. Thus, calculations with combined surface cooling and baroclinicity increases, representative of the Last Glacial Maximum, reveal an absence of change in the amplitude of the peak westerly stress but exhibit a substantial equatorward shift in its position, 7° for a 3-K cooling and 11° for a 6-K cooling. The easterlies, however, always increase in strength when the surface westerlies move equatorward. The application of these results to the LGM must take into account the model’s assumption of symmetry between the two hemispheres. Any changes in the climate’s hemispheric asymmetry could also cause comparable latitudinal shifts in the westerlies, probably of opposite sign in the two hemispheres. Published coupled-model simulations for the LGM give an equatorward shift for the peak westerlies in the Northern Hemisphere but give contradictory results for the Southern Hemisphere.


1992 ◽  
Vol 19 (9) ◽  
pp. 897-900 ◽  
Author(s):  
P. Friedlingstein ◽  
C. Delire ◽  
J. F. Müller ◽  
J. C. Gérard

2001 ◽  
Vol 28 (8) ◽  
pp. 1571-1574 ◽  
Author(s):  
Chris D. Hewitt ◽  
Anthony J. Broccoli ◽  
John F. B. Mitchell ◽  
Ronald J. Stouffer

2001 ◽  
Vol 30 (1) ◽  
pp. 43-52 ◽  
Author(s):  
Edward C. Little ◽  
Lionel E. Jackson ◽  
Thomas S. James ◽  
Stephen R. Hicock ◽  
Elizabeth R. Leboe

Sign in / Sign up

Export Citation Format

Share Document