Impact study with observations assimilated over North America and the North Pacific Ocean on the MSC global forecast system. Part I: Contribution of radiosonde, aircraft and satellite data

2010 ◽  
Vol 48 (1) ◽  
pp. 10-25 ◽  
Author(s):  
Stéphane Laroche ◽  
Réal Sarrazin
2020 ◽  
Vol 33 (5) ◽  
pp. 1691-1706 ◽  
Author(s):  
Shizuo Liu ◽  
Qigang Wu ◽  
Steven R. Schroeder ◽  
Yonghong Yao ◽  
Yang Zhang ◽  
...  

AbstractPrevious studies show that there are substantial influences of winter–spring Tibetan Plateau (TP) snow anomalies on the Asian summer monsoon and that autumn–winter TP heavy snow can lead to persisting hemispheric Pacific–North America-like responses. This study further investigates global atmospheric responses to realistic extensive spring TP snow anomalies using observations and ensemble transient model integrations. Model ensemble simulations are forced by satellite-derived observed March–May TP snow cover extent and snow water equivalent in years with heavy or light TP snow. Heavy spring TP snow causes simultaneous significant local surface cooling and precipitation decreases over and near the TP snow anomaly. Distant responses include weaker surface cooling over most Asian areas surrounding the TP, a weaker drying band extending east and northeast into the North Pacific Ocean, and increased precipitation in a region surrounding this drying band. Also, there is tropospheric cooling from the TP into the North Pacific and over most of North America and the North Atlantic Ocean. The TP snow anomaly induces a negative North Pacific Oscillation/western Pacific–like teleconnection response throughout the troposphere and stratosphere. Atmospheric responses also include significantly increased Pacific trade winds, a strengthened intertropical convergence zone over the equatorial Pacific Ocean, and an enhanced local Hadley circulation. This result suggests a near-global impact of the TP snow anomaly in nearly all seasons.


2016 ◽  
Vol 29 (15) ◽  
pp. 5661-5674 ◽  
Author(s):  
Henry F. Diaz ◽  
Eugene R. Wahl ◽  
Eduardo Zorita ◽  
Thomas W. Giambelluca ◽  
Jon K. Eischeid

Abstract Few if any high-resolution (annually resolved) paleoclimate records are available for the Hawaiian Islands prior to ~1850 CE, after which some instrumental records start to become available. This paper shows how atmospheric teleconnection patterns between North America and the northeastern North Pacific (NNP) allow for reconstruction of Hawaiian Islands rainfall using remote proxy information from North America. Based on a newly available precipitation dataset for the state of Hawaii and observed and reconstructed December–February (DJF) sea level pressures (SLPs) in the North Pacific Ocean, the authors make use of a strong relationship between winter SLP variability in the northeast Pacific and corresponding DJF Hawaii rainfall variations to reconstruct and evaluate that season’s rainfall over the period 1500–2012 CE. A general drying trend, though with substantial decadal and longer-term variability, is evident, particularly during the last ~160 years. Hawaiian Islands rainfall exhibits strong modulation by El Niño–Southern Oscillation (ENSO), as well as in relation to Pacific decadal oscillation (PDO)-like variability. For significant periods of time, the reconstructed large-scale changes in the North Pacific SLP field described here and by construction the long-term decline in Hawaiian winter rainfall are broadly consistent with long-term changes in tropical Pacific sea surface temperature (SST) based on ENSO reconstructions documented in several other studies, particularly over the last two centuries. Also noted are some rather large multidecadal fluctuations in rainfall (and hence in NNP SLP) in the eighteenth century of undetermined provenance.


1981 ◽  
Vol 59 (12) ◽  
pp. 2396-2398
Author(s):  
Alex E. Peden

Data from vertebral counts suggest two species of Leuroglossus occur off the west coast of North America: Leuroglossus schmidti north of the Strait of Juan de Fuca and L. stilbius off Oregon and southward.


2002 ◽  
Vol 35 ◽  
pp. 423-429 ◽  
Author(s):  
G.W. Kent Moore ◽  
Keith Alverson ◽  
Gerald Holdsworth

AbstractIn this paper, we explore the climate signal contained in the annual snow-accumulation time series from a high-altitude ice core drilled on Mount Logan in the Saint Elias mountain range of western Canada. With the global meteorological fields from the U.S. National Centers for Environmental Prediction re-analysis, we construct composites of the atmospheric circulation and temperature patterns associated with anomalous snow accumulation at the Mount Logan site over the period 1948–87. These results confirm, with an independent method, previous work that identified the existence of a coherent upper-tropospheric circulation anomaly extending over much of the North Pacific Ocean and North America that is associated with snow accumulation at the site. This anomaly has a similar structure to that associated with the extratropical response to the El Niño–Southern Oscillation. Coherent structures consistent with this circulation pattern also exist in both air- and land-temperature fields. In particular, heavy (light) snow accumulation at the site is associated with warmer (colder) air and surface temperatures over the North Pacific Ocean and North America. Over the North Pacific, the sea-surface temperature anomaly associated with heavy snow accumulation at the site has a “horseshoe” pattern that is similar to that associated with the Pacific Decadal Oscillation.


Sign in / Sign up

Export Citation Format

Share Document