scholarly journals A Five-Century Reconstruction of Hawaiian Islands Winter Rainfall

2016 ◽  
Vol 29 (15) ◽  
pp. 5661-5674 ◽  
Author(s):  
Henry F. Diaz ◽  
Eugene R. Wahl ◽  
Eduardo Zorita ◽  
Thomas W. Giambelluca ◽  
Jon K. Eischeid

Abstract Few if any high-resolution (annually resolved) paleoclimate records are available for the Hawaiian Islands prior to ~1850 CE, after which some instrumental records start to become available. This paper shows how atmospheric teleconnection patterns between North America and the northeastern North Pacific (NNP) allow for reconstruction of Hawaiian Islands rainfall using remote proxy information from North America. Based on a newly available precipitation dataset for the state of Hawaii and observed and reconstructed December–February (DJF) sea level pressures (SLPs) in the North Pacific Ocean, the authors make use of a strong relationship between winter SLP variability in the northeast Pacific and corresponding DJF Hawaii rainfall variations to reconstruct and evaluate that season’s rainfall over the period 1500–2012 CE. A general drying trend, though with substantial decadal and longer-term variability, is evident, particularly during the last ~160 years. Hawaiian Islands rainfall exhibits strong modulation by El Niño–Southern Oscillation (ENSO), as well as in relation to Pacific decadal oscillation (PDO)-like variability. For significant periods of time, the reconstructed large-scale changes in the North Pacific SLP field described here and by construction the long-term decline in Hawaiian winter rainfall are broadly consistent with long-term changes in tropical Pacific sea surface temperature (SST) based on ENSO reconstructions documented in several other studies, particularly over the last two centuries. Also noted are some rather large multidecadal fluctuations in rainfall (and hence in NNP SLP) in the eighteenth century of undetermined provenance.

2020 ◽  
Vol 33 (5) ◽  
pp. 1691-1706 ◽  
Author(s):  
Shizuo Liu ◽  
Qigang Wu ◽  
Steven R. Schroeder ◽  
Yonghong Yao ◽  
Yang Zhang ◽  
...  

AbstractPrevious studies show that there are substantial influences of winter–spring Tibetan Plateau (TP) snow anomalies on the Asian summer monsoon and that autumn–winter TP heavy snow can lead to persisting hemispheric Pacific–North America-like responses. This study further investigates global atmospheric responses to realistic extensive spring TP snow anomalies using observations and ensemble transient model integrations. Model ensemble simulations are forced by satellite-derived observed March–May TP snow cover extent and snow water equivalent in years with heavy or light TP snow. Heavy spring TP snow causes simultaneous significant local surface cooling and precipitation decreases over and near the TP snow anomaly. Distant responses include weaker surface cooling over most Asian areas surrounding the TP, a weaker drying band extending east and northeast into the North Pacific Ocean, and increased precipitation in a region surrounding this drying band. Also, there is tropospheric cooling from the TP into the North Pacific and over most of North America and the North Atlantic Ocean. The TP snow anomaly induces a negative North Pacific Oscillation/western Pacific–like teleconnection response throughout the troposphere and stratosphere. Atmospheric responses also include significantly increased Pacific trade winds, a strengthened intertropical convergence zone over the equatorial Pacific Ocean, and an enhanced local Hadley circulation. This result suggests a near-global impact of the TP snow anomaly in nearly all seasons.


Science ◽  
2014 ◽  
Vol 346 (6213) ◽  
pp. 1102-1106 ◽  
Author(s):  
Il-Nam Kim ◽  
Kitack Lee ◽  
Nicolas Gruber ◽  
David M. Karl ◽  
John L. Bullister ◽  
...  

The recent increase in anthropogenic emissions of reactive nitrogen from northeastern Asia and the subsequent enhanced deposition over the extensive regions of the North Pacific Ocean (NPO) have led to a detectable increase in the nitrate (N) concentration of the upper ocean. The rate of increase of excess N relative to phosphate (P) was found to be highest (∼0.24 micromoles per kilogram per year) in the vicinity of the Asian source continent, with rates decreasing eastward across the NPO, consistent with the magnitude and distribution of atmospheric nitrogen deposition. This anthropogenically driven increase in the N content of the upper NPO may enhance primary production in this N-limited region, potentially leading to a long-term change of the NPO from being N-limited to P-limited.


2020 ◽  
Author(s):  
Jonathan Beverley ◽  
Mat Collins ◽  
Hugo Lambert ◽  
Rob Chadwick

<p>El Niño–Southern Oscillation (ENSO) has major impacts on the weather and climate across many regions of the world. Understanding how these teleconnections may change in the future is therefore an important area of research. Here, we use simulations from the Coupled Model Intercomparison Project Phase 6 (CMIP6) to investigate future changes in ENSO teleconnections in the North Pacific/North America sector.</p><p>Precipitation over the equatorial Pacific associated with ENSO is projected to shift eastwards under global warming as a result of greater warming in the east Pacific, which reduces the barrier to convection as the warm pool expands eastwards. As a result, there is medium confidence (IPCC AR5 report) that ENSO teleconnections will shift eastwards in the North Pacific/North America sector. In the CMIP6 models, the present day teleconnection is relatively well simulated, with most models showing an anomalously deep Aleutian low and associated positive temperature anomalies over Alaska and northern North America in El Niño years. In the future warming simulations (we use abrupt-4xCO2, in which CO2 concentrations are immediately quadrupled from the global annual mean 1850 value), in agreement with the IPCC AR5 report, the North America teleconnection and associated circulation change is shifted eastwards in most models. However, it is also significantly weaker, with the result that the positive temperature anomalies in El Niño years over North America are much reduced. This weakening is seen both in models with a projected increase and projected decrease in the amplitude of future El Niño events. The mechanisms related to these projected changes, along with potential implications for future long range predictability over North America, will be discussed.</p>


2007 ◽  
Vol 20 (21) ◽  
pp. 5285-5300 ◽  
Author(s):  
B. Yu ◽  
A. Shabbar ◽  
F. W. Zwiers

Abstract This study provides further evidence of the impacts of tropical Pacific interannual [El Niño–Southern Oscillation (ENSO)] and Northern Pacific decadal–interdecadal [North Pacific index (NPI)] variability on the Pacific–North American (PNA) sector. Both the tropospheric circulation and the North American temperature suggest an enhanced PNA-like climate response and impacts on North America when ENSO and NPI variability are out of phase. In association with this variability, large stationary wave activity fluxes appear in the mid- to high latitudes originating from the North Pacific and flowing downstream toward North America. Atmospheric heating anomalies associated with ENSO variability are confined to the Tropics, and generally have the same sign throughout the troposphere with maximum anomalies at 400 hPa. The heating anomalies that correspond to the NPI variability exhibit a center over the midlatitude North Pacific in which the heating changes sign with height, along with tropical anomalies of comparable magnitudes. Atmospheric heating anomalies of the same sign appear in both the tropical Pacific and the North Pacific with the out-of-phase combination of ENSO and NPI. Both sources of variability provide energy transports toward North America and tend to favor the occurrence of stationary wave anomalies.


1981 ◽  
Vol 59 (12) ◽  
pp. 2396-2398
Author(s):  
Alex E. Peden

Data from vertebral counts suggest two species of Leuroglossus occur off the west coast of North America: Leuroglossus schmidti north of the Strait of Juan de Fuca and L. stilbius off Oregon and southward.


2020 ◽  
Author(s):  
Kana Nagashima ◽  
Jason Addison ◽  
Naomi Harada

<p>   The North Pacific Ocean is the largest geographic feature in the Northern Hemisphere and its interactions with the overlying atmosphere drives critical components of the global climate system. The Aleutian Low (AL), the semi-permanent atmospheric low-pressure system centered near the Aleutian Islands, is dynamically linked to environmental change in the North Pacific and surrounding continental areas. However, the multi-centennial and longer time-scale history of the AL during the Holocene is poorly understood.</p><p>   In this study, AL variability since 7.5 ka was examined by applying principal component analysis (PCA) to published δ<sup>18</sup>O data of sedimentary calcite, peat, and speleothem deposits (n = 7) from western North America. Extracted Principal Component 1 (PC1) is characterized by multi-centennial to millennial-scale oscillations, with a spatial loading pattern that suggests PC1 reflects intensification and westward shifts of the AL during ca. 7.3–7.1, 6.3–5.2, 3.6–3.3, 2.9–2.7, 2.6–2.1, 1.8–1.2 and 0.5–0.3 ka. The timing of these shifts are coeval to periods characterized by large meanderings of the Westerly Jet (WJ) Stream over East Asia and solar activity minima, which together suggest that AL variability is related to declines in solar irradiance through its interactions with the WJ. In contrast, PC2 represents a dramatic change between the middle and late Holocene, and appears to reflect long-term intensified AL conditions related to orbitally-driven El Niño–Southern Oscillation intensification between the middle to late Holocene at ~4.5 ka. These findings are critically important for understanding background natural climate variability during the Holocene.</p>


2002 ◽  
Vol 35 ◽  
pp. 423-429 ◽  
Author(s):  
G.W. Kent Moore ◽  
Keith Alverson ◽  
Gerald Holdsworth

AbstractIn this paper, we explore the climate signal contained in the annual snow-accumulation time series from a high-altitude ice core drilled on Mount Logan in the Saint Elias mountain range of western Canada. With the global meteorological fields from the U.S. National Centers for Environmental Prediction re-analysis, we construct composites of the atmospheric circulation and temperature patterns associated with anomalous snow accumulation at the Mount Logan site over the period 1948–87. These results confirm, with an independent method, previous work that identified the existence of a coherent upper-tropospheric circulation anomaly extending over much of the North Pacific Ocean and North America that is associated with snow accumulation at the site. This anomaly has a similar structure to that associated with the extratropical response to the El Niño–Southern Oscillation. Coherent structures consistent with this circulation pattern also exist in both air- and land-temperature fields. In particular, heavy (light) snow accumulation at the site is associated with warmer (colder) air and surface temperatures over the North Pacific Ocean and North America. Over the North Pacific, the sea-surface temperature anomaly associated with heavy snow accumulation at the site has a “horseshoe” pattern that is similar to that associated with the Pacific Decadal Oscillation.


Sign in / Sign up

Export Citation Format

Share Document