Oxidation behavior of 26Cr-16Ni and AISI 309 austenitic stainless steels in air flow at 1,173 K

2015 ◽  
Vol 57 (7-8) ◽  
pp. 597-601 ◽  
Author(s):  
Peeraya Pipatnukun ◽  
Panyawat Wangyao ◽  
Gobboon Lothongkum
2015 ◽  
Vol 84 (5-6) ◽  
pp. 541-565 ◽  
Author(s):  
N. M. Yanar ◽  
B. S. Lutz ◽  
L. Garcia-Fresnillo ◽  
M. P. Brady ◽  
Gerald H. Meier

2014 ◽  
Vol 1715 ◽  
Author(s):  
S. Ooki ◽  
T. Yonezawa ◽  
M. Watanabe ◽  
H. Kokawa

ABSTRACTStress Corrosion Cracking (SCC) has been detected in Boiling Water Reactors (BWRs) on core shrouds and primary water re-circulation piping made of low carbon stainless steels. Material hardening strongly affects SCC propagation behavior, and SCC growth rates increase with increasing hardness of austenitic stainless steels caused by cold work or neutron irradiation.Research work has been conducted in the authors’ laboratories with the aim of improving SCC resistance using chemical composition control of stainless steels. It has been previously reported that high stacking fault energy (SFE) materials showed better SCC resistance than low SFE materials due to hardening being suppressed in high SFE materials. In the present study, SCC growth rate (CGR) tests were performed using 15% cold worked Types 316L and 25Cr-20Ni stainless steels in a simulated BWR water environment. The 25Cr-20Ni stainless steel used has high SFE value due to chemical composition control and measured SCC growth rates were lower than those of low SFE stainless steels.However, oxidation behavior is one of the more important factors influencing SCC of austenitic stainless steels in addition to material hardening behavior, and the influence of the chemical composition control necessary to increase SFE on oxidation behavior in BWR primary coolants is still unclear. In this study, therefore, immersion tests using Types 316L and 25Cr-20Ni stainless steel specimens were also conducted in the simulated BWR water environment. The surface oxide films on the specimens were then analyzed with micro-Raman spectroscopy and glow discharge optical emission spectroscopy in order to help clarify the oxidation behavior.The results of these tests and analyses showed that the NiFe2O4 content of the outer oxide layers on the high SFE stainless steels was higher than that on the low SFE stainless steels. The inner oxide film on the 25Cr-20Ni stainless steel also had a high chromium content.Based on the above results, SCC resistance and oxidation behavior of high SFE austenitic stainless steels in a simulated BWR water environment will be discussed.


Author(s):  
Liying Tang ◽  
Rongcan Zhou ◽  
Yan Guo ◽  
Bohan Wang ◽  
Shufang Hou

The effect of shot peening on the steam oxidation behavior of HR3C and TEMPALOY A-3 tubing was investigated at 750 °C for up to 600 hrs. The results indicated that shot peening can significantly improve the steam oxidation resistance of the 22∼25%Cr austenitic stainless steels. The scales formed on shot-peened tubes were essentially composed of Cr2O3 and MnCr2O4. However the scales formed on the as-received tubes had a two-layer structure, consisting of an outer layer of Fe3O4 and Fe2O3 and an inner layer of Fe3O4 and (Fe,Cr)3O4. Paper published with permission.


2014 ◽  
Vol 931-932 ◽  
pp. 338-343 ◽  
Author(s):  
Ornin Srihakulung ◽  
Panyawat Wangyao ◽  
Gobboon Lothongkum ◽  
Prasonk Sricharoenchai

This work studied the effect of Nickel addition to improve the oxidation behavior of austenitic stainless steels at 1,073 K and 1,173 K. The results show that Nickel increases the oxidation resistance of the austenitic stainless steels. The compositions of oxide scale also change form only Cr2O3 to be Cr2O3, Fe2O3, NiFe2O4 and Ni (Cr2O4). The oxidation behavior follows the parabolic rate law; W = ktn, where W = weight gain (g/cm2), t = time (s), k is the exponential rate constant and n is the exponent of growth rate. The n values are between 0.47-0.88.


Author(s):  
J. J. Laidler ◽  
B. Mastel

One of the major materials problems encountered in the development of fast breeder reactors for commercial power generation is the phenomenon of swelling in core structural components and fuel cladding. This volume expansion, which is due to the retention of lattice vacancies by agglomeration into large polyhedral clusters (voids), may amount to ten percent or greater at goal fluences in some austenitic stainless steels. From a design standpoint, this is an undesirable situation, and it is necessary to obtain experimental confirmation that such excessive volume expansion will not occur in materials selected for core applications in the Fast Flux Test Facility, the prototypic LMFBR now under construction at the Hanford Engineering Development Laboratory (HEDL). The HEDL JEM-1000 1 MeV electron microscope is being used to provide an insight into trends of radiation damage accumulation in stainless steels, since it is possible to produce atom displacements at an accelerated rate with 1 MeV electrons, while the specimen is under continuous observation.


Sign in / Sign up

Export Citation Format

Share Document